Leveraging Machine Learning for Personalized Wearable Biomedical Devices: A Review.

Ali Olyanasab, Mohsen Annabestani
Author Information
  1. Ali Olyanasab: Institute for Integrated Circuits, Johannes Kepler University Linz, 4040 Linz, Austria. ORCID
  2. Mohsen Annabestani: Weill Cornell Medicine, Cornell University, New York, NY 10065, USA.

Abstract

This review investigates the convergence of artificial intelligence (AI) and personalized health monitoring through wearable devices, classifying them into three distinct categories: bio-electrical, bio-impedance and electro-chemical, and electro-mechanical. Wearable devices have emerged as promising tools for personalized health monitoring, utilizing machine learning to distill meaningful insights from the expansive datasets they capture. Within the bio-electrical category, these devices employ biosignal data, such as electrocardiograms (ECGs), electromyograms (EMGs), electroencephalograms (EEGs), etc., to monitor and assess health. The bio-impedance and electro-chemical category focuses on devices measuring physiological signals, including glucose levels and electrolytes, offering a holistic understanding of the wearer's physiological state. Lastly, the electro-mechanical category encompasses devices designed to capture motion and physical activity data, providing valuable insights into an individual's physical activity and behavior. This review critically evaluates the integration of machine learning algorithms within these wearable devices, illuminating their potential to revolutionize healthcare. Emphasizing early detection, timely intervention, and the provision of personalized lifestyle recommendations, the paper outlines how the amalgamation of advanced machine learning techniques with wearable devices can pave the way for more effective and individualized healthcare solutions. The exploration of this intersection promises a paradigm shift, heralding a new era in healthcare innovation and personalized well-being.

Keywords

References

  1. Anal Chem. 2022 May 10;94(18):6842-6852 [PMID: 35467846]
  2. Nat Commun. 2021 Aug 12;12(1):4876 [PMID: 34385436]
  3. Sci Rep. 2022 Mar 8;12(1):3715 [PMID: 35260675]
  4. Biosensors (Basel). 2023 Jun 27;13(7): [PMID: 37504083]
  5. Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:4252-4255 [PMID: 33018935]
  6. IEEE J Transl Eng Health Med. 2021 Jul 19;9:2700513 [PMID: 34765324]
  7. Sensors (Basel). 2022 Jan 05;22(1): [PMID: 35009935]
  8. Epilepsia. 2020 Dec;61(12):2653-2666 [PMID: 33040327]
  9. Nat Commun. 2022 Sep 9;13(1):5311 [PMID: 36085341]
  10. Seizure. 2023 Apr;107:155-161 [PMID: 37068328]
  11. Sci Rep. 2022 Feb 14;12(1):2442 [PMID: 35165316]
  12. Sensors (Basel). 2023 Apr 14;23(8): [PMID: 37112323]
  13. Micromachines (Basel). 2022 Nov 01;13(11): [PMID: 36363901]
  14. JMIR Med Inform. 2022 Feb 15;10(2):e33063 [PMID: 35166679]
  15. Sci Rep. 2022 Sep 1;12(1):14885 [PMID: 36050392]
  16. Adv Sci (Weinh). 2023 Jul;10(20):e2206982 [PMID: 37150855]
  17. Nat Commun. 2021 Mar 23;12(1):1823 [PMID: 33758197]
  18. Front Bioeng Biotechnol. 2020 Jan 24;8:9 [PMID: 32039192]
  19. Sensors (Basel). 2023 Mar 29;23(7): [PMID: 37050625]
  20. Sci Rep. 2022 Nov 28;12(1):20486 [PMID: 36443353]
  21. Nat Commun. 2023 Aug 17;14(1):5009 [PMID: 37591881]
  22. IEEE Trans Biomed Circuits Syst. 2023 Aug;17(4):808-817 [PMID: 37318976]
  23. Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:3606-3611 [PMID: 33018783]

Word Cloud

Created with Highcharts 10.0.0devicespersonalizedwearablemachinelearninghealthcategoryhealthcarereviewmonitoringbio-electricalbio-impedanceelectro-chemicalelectro-mechanicalWearableinsightscapturedataphysiologicalphysicalactivityinvestigatesconvergenceartificialintelligenceAIclassifyingthreedistinctcategories:emergedpromisingtoolsutilizingdistillmeaningfulexpansivedatasetsWithinemploybiosignalelectrocardiogramsECGselectromyogramsEMGselectroencephalogramsEEGsetcmonitorassessfocusesmeasuringsignalsincludingglucoselevelselectrolytesofferingholisticunderstandingwearer'sstateLastlyencompassesdesignedmotionprovidingvaluableindividual'sbehaviorcriticallyevaluatesintegrationalgorithmswithinilluminatingpotentialrevolutionizeEmphasizingearlydetectiontimelyinterventionprovisionlifestylerecommendationspaperoutlinesamalgamationadvancedtechniquescanpavewayeffectiveindividualizedsolutionsexplorationintersectionpromisesparadigmshiftheraldingnewerainnovationwell-beingLeveragingMachineLearningPersonalizedBiomedicalDevices:Review

Similar Articles

Cited By