Spatial and Temporal Variability of Saxitoxin-Producing Cyanobacteria in U.S. Urban Lakes.

Youchul Jeon, Ian Struewing, Kyle McIntosh, Marcie Tidd, Laura Webb, Hodon Ryu, Heath Mash, Jingrang Lu
Author Information
  1. Youchul Jeon: Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA. ORCID
  2. Ian Struewing: United States Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA.
  3. Kyle McIntosh: Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA. ORCID
  4. Marcie Tidd: United States Environmental Protection Agency, Region 8, Lakewood, CO 80225, USA.
  5. Laura Webb: United States Environmental Protection Agency, Region 7, Kansas City, KS 66101, USA.
  6. Hodon Ryu: United States Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA. ORCID
  7. Heath Mash: United States Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA.
  8. Jingrang Lu: United States Environmental Protection Agency, Office of Research and Development, Cincinnati, OH 45268, USA. ORCID

Abstract

Harmful cyanobacterial blooms (HCBs) are of growing global concern due to their production of toxic compounds, which threaten ecosystems and human health. Saxitoxins (STXs), commonly known as paralytic shellfish poison, are a neurotoxic alkaloid produced by some cyanobacteria. Although many field studies indicate a widespread distribution of STX, it is understudied relative to other cyanotoxins such as microcystins (MCs). In this study, we assessed eleven U.S. urban lakes using qPCR, gene-targeting sequencing, and 16S rRNA gene sequencing to understand the spatio-temporal variations in cyanobacteria and their potential role in STX production. During the blooms, qPCR analysis confirmed the presence of the STX-encoding gene at all lakes. In particular, the abundance of the gene had a strong positive correlation with STX concentrations in Big 11 Lake in Kansas City, which was also the site with the highest quantified STX concentration. Sequencing analysis revealed that potential STX producers, such as , , and were present. Further analysis targeting amplicons of the gene identified that and/or are the primary STX producer, showing a significant correlation with gene abundances and STX concentrations. In addition, was associated with environmental factors, such as conductivity, sulfate, and orthophosphate, whereas was correlated with temperature and pH. Overall, the results herein enhance our understanding of the STX-producing cyanobacteria and aid in developing strategies to control HCBs.

Keywords

References

  1. Ecol Indic. 2019;104:378-389 [PMID: 31275063]
  2. PLoS One. 2011 Feb 10;6(2):e14657 [PMID: 21347365]
  3. Toxicon. 2017 Nov;138:68-77 [PMID: 28797629]
  4. Appl Environ Microbiol. 2008 Jul;74(13):4044-53 [PMID: 18487408]
  5. Harmful Algae. 2022 Jan;111:102170 [PMID: 35016758]
  6. Microb Ecol. 2016 May;71(4):802-13 [PMID: 26691315]
  7. FEMS Microbiol Ecol. 2008 Nov;66(2):243-9 [PMID: 18752621]
  8. Sci Total Environ. 2022 Jul 15;830:154568 [PMID: 35302035]
  9. Toxicon. 2004 Feb;43(2):149-58 [PMID: 15019474]
  10. BMC Biochem. 2009 Mar 30;10:8 [PMID: 19331657]
  11. Water Res. 2018 Sep 01;140:280-290 [PMID: 29729580]
  12. Science. 1970 Aug 14;169(3946):690-1 [PMID: 5429903]
  13. Toxicon. 1995 Oct;33(10):1321-9 [PMID: 8599183]
  14. Nat Biotechnol. 2019 Aug;37(8):852-857 [PMID: 31341288]
  15. Mar Drugs. 2010 Jul 20;8(7):2185-211 [PMID: 20714432]
  16. Water Res. 2021 Oct 15;205:117571 [PMID: 34628111]
  17. Mol Biol Evol. 2018 Jun 1;35(6):1547-1549 [PMID: 29722887]
  18. Mar Drugs. 2020 Feb 05;18(2): [PMID: 32033403]
  19. Harmful Algae. 2016 Apr;54:213-222 [PMID: 28073478]
  20. Nat Prod Rep. 2006 Apr;23(2):200-22 [PMID: 16572228]
  21. Environ Microbiol. 2016 Feb;18(2):316-24 [PMID: 26310611]
  22. Sci Rep. 2019 Feb 21;9(1):2480 [PMID: 30792397]
  23. Harmful Algae. 2022 Jul;116:102215 [PMID: 35710200]
  24. Front Microbiol. 2015 Nov 17;6:1254 [PMID: 26635737]
  25. Nat Methods. 2016 Jul;13(7):581-3 [PMID: 27214047]
  26. PLoS One. 2013 Aug 28;8(8):e74238 [PMID: 24015317]
  27. PLoS One. 2013 Apr 22;8(4):e61217 [PMID: 23630581]
  28. Harmful Algae. 2016 Apr;54:4-20 [PMID: 28073480]
  29. J Water Resour Prot. 2017 Oct 31;9(11):1-29 [PMID: 30079124]
  30. Harmful Algae. 2021 Jan;101:101966 [PMID: 33526182]
  31. Water Res. 2020 Mar 1;170:115262 [PMID: 31785564]
  32. Water Res. 2019 Oct 15;163:114853 [PMID: 31310856]
  33. Toxins (Basel). 2019 Jan 01;11(1): [PMID: 30609666]
  34. Molecules. 2019 Jan 25;24(3): [PMID: 30691073]
  35. Sci Total Environ. 2022 May 10;820:153245 [PMID: 35065121]
  36. Science. 2008 Apr 4;320(5872):57-8 [PMID: 18388279]
  37. Mar Drugs. 2010 May 10;8(5):1650-80 [PMID: 20559491]
  38. Toxicon. 1997 May;35(5):711-22 [PMID: 9203296]

Grants

  1. Safe and Sustainable Water Resources (SSWR) 404.1.3 and the United States Environmental Protection Agency Regional Applied Research Effort Project (U.S. EPA ROAR FY21)/The United States Environmental Protection Agency

MeSH Term

Humans
Saxitoxin
Lakes
RNA, Ribosomal, 16S
Ecosystem
Cyanobacteria
Aphanizomenon

Chemicals

Saxitoxin
RNA, Ribosomal, 16S

Word Cloud

Created with Highcharts 10.0.0STXgenecyanobacteriabloomsqPCRanalysiscyanobacterialHCBsproductionparalyticshellfishUSlakessequencingpotentialcorrelationconcentrationsHarmfulgrowingglobalconcernduetoxiccompoundsthreatenecosystemshumanhealthSaxitoxinsSTXscommonlyknownpoisonneurotoxicalkaloidproducedAlthoughmanyfieldstudiesindicatewidespreaddistributionunderstudiedrelativecyanotoxinsmicrocystinsMCsstudyassessedelevenurbanusinggene-targeting16SrRNAunderstandspatio-temporalvariationsroleconfirmedpresenceSTX-encodingparticularabundancestrongpositiveBig11LakeKansasCityalsositehighestquantifiedconcentrationSequencingrevealedproducerspresenttargetingampliconsidentifiedand/orprimaryproducershowingsignificantabundancesadditionassociatedenvironmentalfactorsconductivitysulfateorthophosphatewhereascorrelatedtemperaturepHOverallresultshereinenhanceunderstandingSTX-producingaiddevelopingstrategiescontrolSpatialTemporalVariabilitySaxitoxin-ProducingCyanobacteriaUrbanLakesharmfultoxinssaxitoxinsxtA

Similar Articles

Cited By