Intensification of daily tropical precipitation extremes from more organized convection.

Jiawei Bao, Bjorn Stevens, Lukas Kluft, Caroline Muller
Author Information
  1. Jiawei Bao: Max Planck Institute for Meteorology, Bundesstrasse 53, Hamburg, 20146, Germany. ORCID
  2. Bjorn Stevens: Max Planck Institute for Meteorology, Bundesstrasse 53, Hamburg, 20146, Germany.
  3. Lukas Kluft: Max Planck Institute for Meteorology, Bundesstrasse 53, Hamburg, 20146, Germany. ORCID
  4. Caroline Muller: Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg, 3400, Austria.

Abstract

Tropical precipitation extremes and their changes with surface warming are investigated using global storm resolving simulations and high-resolution observations. The simulations demonstrate that the mesoscale organization of convection, a process that cannot be physically represented by conventional global climate models, is important for the variations of tropical daily accumulated precipitation extremes. In both the simulations and observations, daily precipitation extremes increase in a more organized state, in association with larger, but less frequent, storms. Repeating the simulations for a warmer climate results in a robust increase in monthly-mean daily precipitation extremes. Higher precipitation percentiles have a greater sensitivity to convective organization, which is predicted to increase with warming. Without changes in organization, the strongest daily precipitation extremes over the tropical oceans increase at a rate close to Clausius-Clapeyron (CC) scaling. Thus, in a future warmer state with increased organization, the strongest daily precipitation extremes over oceans increase at a faster rate than CC scaling.

References

  1. Proc Natl Acad Sci U S A. 2016 Aug 9;113(32):8927-32 [PMID: 27412863]
  2. Nat Commun. 2019 Apr 23;10(1):1794 [PMID: 31015416]
  3. Philos Trans A Math Phys Eng Sci. 2021 Apr 19;379(2195):20190543 [PMID: 33641467]
  4. Sci Adv. 2023 Jan 13;9(2):eabo5317 [PMID: 36630505]
  5. J Adv Model Earth Syst. 2021 Nov;13(11):e2021MS002607 [PMID: 35860722]
  6. Geophys Res Lett. 2020 May 16;47(9):e2019GL086927 [PMID: 32728306]
  7. Surv Geophys. 2017;38(6):1199-1236 [PMID: 31997841]
  8. J Adv Model Earth Syst. 2020 Sep;12(9):e2020MS002138 [PMID: 33042391]
  9. J Adv Model Earth Syst. 2019 Oct;11(10):3074-3089 [PMID: 31867089]
  10. Science. 2018 Jun 8;360(6393):1072-1073 [PMID: 29880673]
  11. Curr Clim Change Rep. 2015;1(2):49-59 [PMID: 26312211]
  12. Rev Geophys. 2015 Jun;53(2):323-361 [PMID: 27478878]
  13. J Adv Model Earth Syst. 2021 Feb;13(2):e2020MS002256 [PMID: 36970188]
  14. Proc Natl Acad Sci U S A. 2017 Dec 12;114(50):13126-13131 [PMID: 29183969]
  15. Nature. 2002 Sep 12;419(6903):224-32 [PMID: 12226677]
  16. Nat Commun. 2019 Sep 19;10(1):4261 [PMID: 31537785]

Word Cloud

Created with Highcharts 10.0.0precipitationextremesdailyincreasesimulationsorganizationtropicalchangeswarmingglobalobservationsconvectionclimateorganizedstatewarmerstrongestoceansrateCCscalingTropicalsurfaceinvestigatedusingstormresolvinghigh-resolutiondemonstratemesoscaleprocessphysicallyrepresentedconventionalmodelsimportantvariationsaccumulatedassociationlargerlessfrequentstormsRepeatingresultsrobustmonthly-meanHigherpercentilesgreatersensitivityconvectivepredictedWithoutcloseClausius-ClapeyronThusfutureincreasedfasterIntensification

Similar Articles

Cited By (1)