Identification of the Reference Genes for Relative qRT-PCR Assay in Two Experimental Models of Rabbit and Horse Subcutaneous ASCs.

Zhenya Ivanova, Valeria Petrova, Natalia Grigorova, Ekaterina Vachkova
Author Information
  1. Zhenya Ivanova: Department of Pharmacology, Animal Physiology, Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria.
  2. Valeria Petrova: Department of Pharmacology, Animal Physiology, Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria. ORCID
  3. Natalia Grigorova: Department of Pharmacology, Animal Physiology, Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria. ORCID
  4. Ekaterina Vachkova: Department of Pharmacology, Animal Physiology, Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria.

Abstract

Obtaining accurate and reliable gene expression results in real-time RT-PCR (qRT-PCR) data analysis requires appropriate normalization by carefully selected reference genes, either a single or a combination of multiple housekeeping genes (HKGs). The optimal reference gene/s for normalization should demonstrate stable expression across varying conditions to diminish potential influences on the results. Despite the extensive database available, research data are lacking regarding the most appropriate HKGs for qRT-PCR data analysis in rabbit and horse adipose-derived stem cells (ASCs). Therefore, in our study, we comprehensively assessed and compared the suitability of some widely used HKGs, employing RefFinder and NormFinder, two extensively acknowledged algorithms for robust data interpretation. The rabbit and horse ASCs were obtained from subcutaneous stromal vascular fraction. ASCs were induced into tri-lineage differentiation, followed by the eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) treatment of the adipose-differentiated rabbit ASCs, while horse experimental groups were formed based on adipogenic, osteogenic, and chondrogenic differentiation. At the end of the experiment, the total mRNA was obtained and used for the gene expression evaluation of the observed factors. According to our findings, glyceraldehyde 3-phosphate dehydrogenase was identified as the most appropriate endogenous control gene for rabbit ASCs, while hypoxanthine phosphoribosyltransferase was deemed most suitable for horse ASCs. The obtained results underscore that these housekeeping genes exhibit robust stability across diverse experimental conditions, remaining unaltered by the treatments. In conclusion, the current research can serve as a valuable baseline reference for experiments evaluating gene expression in rabbit and horse ASCs. It highlights the critical consideration of housekeeping gene abundance and stability in qPCR experiments, emphasizing the need for an individualized approach tailored to the specific requirements of the study.

Keywords

References

  1. Small. 2016 Mar 9;12(10):1342-50 [PMID: 26756453]
  2. Stem Cell Res Ther. 2021 Feb 3;12(1):97 [PMID: 33536069]
  3. Vet Res Commun. 2011 Aug;35(6):355-65 [PMID: 21614641]
  4. Trends Genet. 2013 Oct;29(10):569-74 [PMID: 23810203]
  5. Science. 1993 Jan 15;259(5093):365-8 [PMID: 8420004]
  6. BMC Mol Biol. 2008 Oct 31;9:98 [PMID: 18976469]
  7. Biol Sex Differ. 2023 Apr 18;14(1):20 [PMID: 37072826]
  8. Biotechnol Lett. 2004 Mar;26(6):509-15 [PMID: 15127793]
  9. Diabetol Metab Syndr. 2020 Apr 29;12:36 [PMID: 32368256]
  10. J Equine Sci. 2016;27(4):165-168 [PMID: 27974876]
  11. J Therm Biol. 2023 Apr;113:103521 [PMID: 37055126]
  12. Orig Life Evol Biosph. 1998 Oct;28(4-6):539-53 [PMID: 9742728]
  13. Front Bioeng Biotechnol. 2020 Aug 13;8:972 [PMID: 32903631]
  14. Cancer Res. 2004 Aug 1;64(15):5245-50 [PMID: 15289330]
  15. Am J Vet Res. 2013 May;74(5):790-800 [PMID: 23627394]
  16. Genome Biol. 2002 Jun 18;3(7):RESEARCH0034 [PMID: 12184808]
  17. BMC Mol Biol. 2010 Aug 14;11:59 [PMID: 20707929]
  18. Sci Rep. 2021 Mar 31;11(1):7302 [PMID: 33790378]
  19. Stem Cell Res Ther. 2019 Oct 22;10(1):309 [PMID: 31640774]
  20. PLoS One. 2015 Mar 31;10(3):e0122515 [PMID: 25825906]
  21. Cytotechnology. 2010 Apr;62(2):109-20 [PMID: 20396946]
  22. Anal Biochem. 2005 Sep 1;344(1):141-3 [PMID: 16054107]
  23. Horm Metab Res. 2001 Oct;33(10):625-7 [PMID: 11607884]
  24. Trends Biotechnol. 2006 Apr;24(4):150-4 [PMID: 16488036]
  25. Nat Cell Biol. 2005 Jul;7(7):665-74 [PMID: 15951807]
  26. Int J Mol Med. 2014 May;33(5):1209-18 [PMID: 24626784]
  27. Genes (Basel). 2021 Mar 17;12(3): [PMID: 33802902]
  28. Materials (Basel). 2018 Jan 20;11(1): [PMID: 29361686]
  29. Biomed Pharmacother. 2017 Apr;88:948-955 [PMID: 28178626]
  30. Tissue Eng. 2001 Apr;7(2):211-28 [PMID: 11304456]
  31. Plant Mol Biol. 2012 Jan 31;: [PMID: 22290409]
  32. Biotechniques. 2004 Jul;37(1):112-4, 116, 118-9 [PMID: 15283208]
  33. Vet Rec Open. 2021 Nov 10;8(1):e22 [PMID: 34795904]
  34. Biotechnol Adv. 2018 Jul - Aug;36(4):1111-1126 [PMID: 29563048]
  35. Sci Rep. 2016 Dec 06;6:38513 [PMID: 27922100]
  36. J Biol Chem. 2001 Jan 26;276(4):2480-6 [PMID: 11035021]
  37. PLoS One. 2018 May 4;13(5):e0196715 [PMID: 29727459]
  38. PLoS One. 2010 Dec 13;5(12):e15208 [PMID: 21179435]
  39. Int J Mol Sci. 2019 Jul 04;20(13): [PMID: 31277510]
  40. Mol Cell. 2005 Oct 28;20(2):263-75 [PMID: 16246728]
  41. BMC Vet Res. 2013 Dec 02;9:240 [PMID: 24295090]
  42. J Equine Vet Sci. 2019 Jan;72:16-27 [PMID: 30929778]
  43. Annu Rev Genet. 1985;19:127-48 [PMID: 3909940]
  44. In Vitro Cell Dev Biol Anim. 2016 Sep;52(8):829-37 [PMID: 27173612]
  45. J Anim Sci Technol. 2015 May 07;57:18 [PMID: 26290738]
  46. Vet Surg. 2007 Oct;36(7):613-22 [PMID: 17894587]
  47. Stem Cells Int. 2012;2012:812693 [PMID: 22577397]
  48. Biotechniques. 2000 Aug;29(2):332-7 [PMID: 10948434]
  49. Cell Mol Biol Lett. 2019 Feb 15;24:14 [PMID: 30815013]
  50. Proc Natl Acad Sci U S A. 1983 Feb;80(3):870-3 [PMID: 6572373]
  51. BMC Genomics. 2022 Aug 13;23(1):585 [PMID: 35962323]
  52. Cell. 2022 Jul 21;185(15):2756-2769 [PMID: 35868278]
  53. Stem Cell Rev Rep. 2021 Jun;17(3):719-738 [PMID: 33025392]
  54. Front Endocrinol (Lausanne). 2016 Aug 22;7:113 [PMID: 27597840]
  55. Stem Cell Rev Rep. 2020 Apr;16(2):301-322 [PMID: 31797146]
  56. Biochem Biophys Res Commun. 1997 Feb 24;231(3):835-8 [PMID: 9070905]
  57. Exp Hematol. 2002 Jun;30(6):503-12 [PMID: 12063017]
  58. PLoS One. 2007 Sep 19;2(9):e898 [PMID: 17878933]
  59. Oncogene. 2007 Apr 19;26(18):2606-20 [PMID: 17072346]
  60. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8460-4 [PMID: 1924305]

Grants

  1. Project No 09/23, and the Ph.D. Fellowship of Dr. Valeria Petrova/Trakia University

MeSH Term

Horses
Rabbits
Animals
Real-Time Polymerase Chain Reaction
Genes, Essential
Cell Differentiation
Glyceraldehyde-3-Phosphate Dehydrogenases
Adipogenesis
Reference Standards
Gene Expression Profiling

Chemicals

Glyceraldehyde-3-Phosphate Dehydrogenases

Word Cloud

Created with Highcharts 10.0.0ASCsrabbitgenehorseexpressiondataresultsqRT-PCRappropriatereferencegeneshousekeepingHKGsobtainedanalysisnormalizationacrossconditionsresearchstudyusedrobustdifferentiationacidexperimentalglyceraldehyde3-phosphatedehydrogenaseendogenouscontrolphosphoribosyltransferasestabilityexperimentsObtainingaccuratereliablereal-timeRT-PCRrequirescarefullyselectedeithersinglecombinationmultipleoptimalgene/sdemonstratestablevaryingdiminishpotentialinfluencesDespiteextensivedatabaseavailablelackingregardingadipose-derivedstemcellsThereforecomprehensivelyassessedcomparedsuitabilitywidelyemployingRefFinderNormFindertwoextensivelyacknowledgedalgorithmsinterpretationsubcutaneousstromalvascularfractioninducedtri-lineagefollowedeicosapentaenoicEPAdocosahexaenoicDHAtreatmentadipose-differentiatedgroupsformedbasedadipogenicosteogenicchondrogenicendexperimenttotalmRNAevaluationobservedfactorsAccordingfindingsidentifiedhypoxanthinedeemedsuitableunderscoreexhibitdiverseremainingunalteredtreatmentsconclusioncurrentcanservevaluablebaselineevaluatinghighlightscriticalconsiderationabundanceqPCRemphasizingneedindividualizedapproachtailoredspecificrequirementsIdentificationReferenceGenesRelativeAssayTwoExperimentalModelsRabbitHorseSubcutaneousadiposetissueequineGAPDHhypoxanthine-guanineHPRT

Similar Articles

Cited By (1)