Lanthanide-Doped ZnO Nanoparticles: Unraveling Their Role in Cytotoxicity, Antioxidant Capacity, and Nanotoxicology.

Jorge L Mejía-Méndez, Diego E Navarro-López, Araceli Sanchez-Martinez, Oscar Ceballos-Sanchez, Luis Eduardo Garcia-Amezquita, Naveen Tiwari, Karla Juarez-Moreno, Gildardo Sanchez-Ante, Edgar R López-Mena
Author Information
  1. Jorge L Mejía-Méndez: Laboratory of Phytochemistry Research, Chemical Biological Sciences Department, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, San Andrés Cholula 72810, Mexico. ORCID
  2. Diego E Navarro-López: Tecnologicode Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral. Ramón Corona No 2514, Colonia Nuevo México, Zapopan 45121, Mexico. ORCID
  3. Araceli Sanchez-Martinez: Departamento de Ingeniería de Proyectos, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, Av. José Guadalupe Zuno # 48, Industrial Los Belenes, Zapopan 45157, Mexico.
  4. Oscar Ceballos-Sanchez: Departamento de Ingeniería de Proyectos, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), Universidad de Guadalajara, Av. José Guadalupe Zuno # 48, Industrial Los Belenes, Zapopan 45157, Mexico.
  5. Luis Eduardo Garcia-Amezquita: Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada No 2501, Monterrey 64849, Mexico. ORCID
  6. Naveen Tiwari: Center for Research in Biological Chemistry and Molecular Materials (CiQUS), University of Santiago de Compostela, Rúa Jenaro de La Fuente S/N, 15782 Santiago de Compostela, Spain. ORCID
  7. Karla Juarez-Moreno: Centro de Física Aplicada y Tecnología Avanzada (CFATA), Universidad Nacional Autónoma de México (UNAM), Querétaro 76230, Mexico. ORCID
  8. Gildardo Sanchez-Ante: Tecnologicode Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral. Ramón Corona No 2514, Colonia Nuevo México, Zapopan 45121, Mexico. ORCID
  9. Edgar R López-Mena: Tecnologicode Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral. Ramón Corona No 2514, Colonia Nuevo México, Zapopan 45121, Mexico. ORCID

Abstract

This study used a sonochemical synthesis method to prepare (La, Sm)-doped ZnO nanoparticles (NPs). The effect of incorporating these lanthanide elements on the structural, optical, and morphological properties of ZnO-NPs was analyzed. The cytotoxicity and the reactive oxygen species (ROS) generation capacity of ZnO-NPs were evaluated against breast (MCF7) and colon (HT29) cancer cell lines. Their antioxidant activity was analyzed using a DPPH assay, and their toxicity towards nauplii was also evaluated. The results revealed that treatment with NPs resulted in the death of 10.559-42.546% and 18.230-38.643% of MCF7 and HT29 cells, respectively. This effect was attributed to the ability of NPs to downregulate ROS formation within the two cell lines in a dose-dependent manner. In the DPPH assay, treatment with (La, Sm)-doped ZnO-NPs inhibited the generation of free radicals at IC values ranging from 3.898 to 126.948 μg/mL. Against nauplii, the synthesized NPs did not cause death nor induce morphological changes at the tested concentrations. A series of machine learning (ML) models were used to predict the biological performance of (La, Sm)-doped ZnO-NPs. Among the designed ML models, the gradient boosting model resulted in the greatest mean absolute error (MAE) (MAE 9.027, R = 0.86). The data generated in this work provide innovative insights into the influence of La and Sm on the structural arrangement and chemical features of ZnO-NPs, together with their cytotoxicity, antioxidant activity, and in vivo toxicity.

Keywords

References

  1. Sci Rep. 2022 Nov 1;12(1):18400 [PMID: 36319823]
  2. Int J Biochem Cell Biol. 2023 Jan;154:106346 [PMID: 36538984]
  3. Int J Mol Sci. 2020 Nov 22;21(22): [PMID: 33266476]
  4. Antioxidants (Basel). 2022 Sep 20;11(10): [PMID: 36290575]
  5. Saudi J Biol Sci. 2021 Mar;28(3):1633-1644 [PMID: 33732049]
  6. J Biomater Appl. 2020 Aug;35(2):237-263 [PMID: 32423319]
  7. Mater Sci Eng C Mater Biol Appl. 2021 Apr;123:112004 [PMID: 33812624]
  8. Biomedicines. 2021 Oct 13;9(10): [PMID: 34680579]
  9. Ultrason Sonochem. 2021 Jan;70:105315 [PMID: 32906064]
  10. Cancers (Basel). 2021 Aug 25;13(17): [PMID: 34503097]
  11. Sci Rep. 2020 Jan 31;10(1):1617 [PMID: 32005898]
  12. Nat Rev Mol Cell Biol. 2022 Jul;23(7):499-515 [PMID: 35190722]
  13. Sci Total Environ. 2020 Apr 1;711:134869 [PMID: 31818580]
  14. J Physiol Sci. 2022 Aug 5;72(1):19 [PMID: 35931969]
  15. ACS Omega. 2020 Jul 02;5(27):16510-16520 [PMID: 32685815]
  16. Hum Exp Toxicol. 2022 Jan-Dec;41:9603271221080236 [PMID: 35099326]
  17. J Phys Chem A. 2022 Nov 24;126(46):8596-8605 [PMID: 36367508]
  18. Ultrason Sonochem. 2022 Nov;90:106176 [PMID: 36174272]
  19. Ultrason Sonochem. 2023 Jan;92:106277 [PMID: 36571883]
  20. Sci Rep. 2020 Oct 23;10(1):18156 [PMID: 33097778]
  21. Biol Trace Elem Res. 2024 Mar;202(3):1288-1304 [PMID: 37392361]
  22. Semin Oncol. 2021 Jun;48(3):238-245 [PMID: 34548190]
  23. Mol Pharm. 2022 Nov 7;19(11):4179-4190 [PMID: 36223494]
  24. ACS Omega. 2021 Apr 21;6(17):11783-11793 [PMID: 34056332]
  25. Acc Chem Res. 2023 Feb 21;56(4):425-439 [PMID: 36745051]
  26. J Nanobiotechnology. 2022 Jun 7;20(1):265 [PMID: 35672765]
  27. Antioxidants (Basel). 2022 Jun 14;11(6): [PMID: 35740061]
  28. Plants (Basel). 2023 May 10;12(10): [PMID: 37653861]
  29. Food Chem. 2022 Jun 30;380:132143 [PMID: 35091319]
  30. J Control Release. 2023 Apr;356:623-648 [PMID: 36868519]
  31. Pharmaceutics. 2023 Feb 22;15(3): [PMID: 36986593]
  32. Toxicol Ind Health. 2023 Mar;39(3):127-137 [PMID: 36680355]
  33. Molecules. 2021 Nov 21;26(22): [PMID: 34834124]
  34. Cancers (Basel). 2021 Sep 12;13(18): [PMID: 34572797]
  35. Ultrason Sonochem. 2022 Jan;82:105892 [PMID: 34959201]
  36. Tumour Biol. 2020 Mar;42(3):1010428320909999 [PMID: 32129155]
  37. CA Cancer J Clin. 2023 May-Jun;73(3):233-254 [PMID: 36856579]
  38. Sci Rep. 2023 May 22;13(1):8252 [PMID: 37217773]
  39. Crit Rev Toxicol. 2020 Jan;50(1):47-71 [PMID: 32186437]
  40. Nanomaterials (Basel). 2022 Jun 30;12(13): [PMID: 35808100]
  41. Chemosphere. 2022 Nov;306:135389 [PMID: 35718032]

Word Cloud

Created with Highcharts 10.0.0ZnO-NPsLaSmNPs-dopedantioxidantactivitytoxicityusedsonochemicalsynthesisZnOeffectlanthanideelementsstructuralmorphologicalanalyzedcytotoxicityROSgenerationevaluatedMCF7HT29celllinesDPPHassaynaupliitreatmentresulteddeathmachinelearningMLmodelsMAEvivostudymethodpreparenanoparticlesincorporatingopticalpropertiesreactiveoxygenspeciescapacitybreastcoloncancerusingtowardsalsoresultsrevealed10559-42546%18230-38643%cellsrespectivelyattributedabilitydownregulateformationwithintwodose-dependentmannerinhibitedfreeradicalsICvaluesranging3898126948μg/mLsynthesizedcauseinducechangestestedconcentrationsseriespredictbiologicalperformanceAmongdesignedgradientboostingmodelgreatestmeanabsoluteerror9027R=086datageneratedworkprovideinnovativeinsightsinfluencearrangementchemicalfeaturestogetherLanthanide-DopedNanoparticles:UnravelingRoleCytotoxicityAntioxidantCapacityNanotoxicologymodeling

Similar Articles

Cited By