Investigation of the Chemiluminescent Reaction of a Fluorinated Analog of Marine Coelenterazine.

Carla M Magalhães, Joaquim C G Esteves da Silva, Luís Pinto da Silva
Author Information
  1. Carla M Magalhães: Centro de Investigação em Química (CIQUP), Instituto de Ciências Moleculares (IMS), Departamento de Geociências, Ambiente e Ordenamento do Território, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal. ORCID
  2. Joaquim C G Esteves da Silva: Centro de Investigação em Química (CIQUP), Instituto de Ciências Moleculares (IMS), Departamento de Geociências, Ambiente e Ordenamento do Território, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal. ORCID
  3. Luís Pinto da Silva: Centro de Investigação em Química (CIQUP), Instituto de Ciências Moleculares (IMS), Departamento de Geociências, Ambiente e Ordenamento do Território, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal. ORCID

Abstract

Bioluminescence (BL) and chemiluminescence (CL) are remarkable processes in which light is emitted due to (bio)chemical reactions. These reactions have attracted significant attention for various applications, such as biosensing, bioimaging, and biomedicine. Some of the most relevant and well-studied BL/CL systems are that of marine imidazopyrazine-based compounds, among which Coelenterazine is a prime example. Understanding the mechanisms behind efficient chemiexcitation is essential for the optimization and development of practical applications for these systems. Here, the CL of a fluorinated Coelenterazine analog was studied using experimental and theoretical approaches to obtain insight into these processes. Experimental analysis revealed that CL is more efficient under basic conditions than under acidic ones, which could be attributed to the higher relative chemiexcitation efficiency of an anionic dioxetanone intermediate over a corresponding neutral species. However, theoretical calculations indicated that the reactions of both species are similarly associated with both electron and charge transfer processes, which are typically used to explain efficiency chemiexcitation. So, neither process appears to be able to explain the relative chemiexcitation efficiencies observed. In conclusion, this study provides further insight into the mechanisms behind the chemiexcitation of imidazopyrazinone-based systems.

Keywords

References

  1. J Am Chem Soc. 2005 Jun 22;127(24):8667-79 [PMID: 15954772]
  2. Chemphyschem. 2011 Dec 9;12(17):3064-76 [PMID: 21997887]
  3. J Am Chem Soc. 2008 Jan 9;130(1):132-49 [PMID: 18076162]
  4. PLoS One. 2016 Jul 01;11(7):e0158579 [PMID: 27367859]
  5. J Org Chem. 2021 Jan 15;86(2):1874-1881 [PMID: 33397105]
  6. Front Chem. 2018 Aug 30;6:384 [PMID: 30234102]
  7. Int J Mol Sci. 2020 Oct 10;21(20): [PMID: 33050422]
  8. Antimicrob Agents Chemother. 2016 Aug 22;60(9):5492-503 [PMID: 27381385]
  9. Nat Rev Chem. 2021 Jan;5(1):4-20 [PMID: 37118106]
  10. Environ Int. 2016 Jul-Aug;92-93:106-18 [PMID: 27071051]
  11. J Phys Chem A. 2023 May 4;127(17):3804-3813 [PMID: 37083412]
  12. Chem Soc Rev. 2016 Oct 24;45(21):6048-6077 [PMID: 27711774]
  13. Org Biomol Chem. 2021 Sep 22;19(36):7930-7936 [PMID: 34549229]
  14. Int J Mol Sci. 2022 Jul 30;23(15): [PMID: 35955625]
  15. Photochem Photobiol Sci. 2017 Jun 14;16(6):897-907 [PMID: 28430271]
  16. ACS Sens. 2022 Dec 23;7(12):3800-3808 [PMID: 36450135]
  17. Chem Biol. 1996 May;3(5):337-47 [PMID: 8807862]
  18. Phys Chem Chem Phys. 2008 Nov 28;10(44):6615-20 [PMID: 18989472]
  19. Photochem Photobiol Sci. 2016 Apr;15(4):466-80 [PMID: 27009907]
  20. Light Sci Appl. 2023 Nov 14;12(1):272 [PMID: 37963871]
  21. Chemistry. 2013 Oct 25;19(44):14970-6 [PMID: 24105816]
  22. Proc Natl Acad Sci U S A. 1978 Jan;75(1):30-3 [PMID: 272645]
  23. J Photochem Photobiol B. 2019 Jan;190:21-31 [PMID: 30453161]
  24. Bioconjug Chem. 2020 Mar 18;31(3):595-604 [PMID: 31830411]
  25. Chem Rev. 2018 Aug 8;118(15):6927-6974 [PMID: 29493234]
  26. Sci Rep. 2021 Dec 21;11(1):24381 [PMID: 34934136]
  27. Molecules. 2022 Dec 14;27(24): [PMID: 36558008]
  28. Photochem Photobiol. 2022 Sep;98(5):1068-1076 [PMID: 34971002]
  29. Chem Soc Rev. 2020 Oct 7;49(19):6800-6815 [PMID: 32929428]
  30. Photochem Photobiol. 2017 Mar;93(2):389-404 [PMID: 27748947]
  31. Org Lett. 2021 Sep 3;23(17):6846-6849 [PMID: 34416112]
  32. Chem Soc Rev. 2021 May 7;50(9):5668-5705 [PMID: 33735357]
  33. J Org Chem. 2012 Dec 7;77(23):10537-44 [PMID: 22852861]
  34. J Comput Chem. 2012 Feb 15;33(5):580-92 [PMID: 22162017]
  35. Photochem Photobiol Sci. 2008 Feb;7(2):197-207 [PMID: 18264587]
  36. Luminescence. 2000 Jan-Feb;15(1):51-8 [PMID: 10660666]
  37. J Am Chem Soc. 2017 Jul 26;139(29):10002-10008 [PMID: 28671836]
  38. BBA Adv. 2022 Dec 23;3:100068 [PMID: 37082267]
  39. Photochem Photobiol Sci. 2012 Jul;11(7):1151-5 [PMID: 22569923]
  40. J Phys Chem B. 2017 Aug 24;121(33):7862-7871 [PMID: 28749684]
  41. Ann Rev Mar Sci. 2010;2:443-93 [PMID: 21141672]
  42. J Org Chem. 2021 Sep 3;86(17):11388-11398 [PMID: 34350754]
  43. J Comput Chem. 2020 Mar 5;41(6):587-603 [PMID: 31840840]
  44. Biosensors (Basel). 2023 Apr 03;13(4): [PMID: 37185527]
  45. Int J Mol Sci. 2020 Jul 30;21(15): [PMID: 32751691]
  46. Methods Mol Biol. 2016;1409:69-77 [PMID: 26846803]
  47. J Infect Public Health. 2014 Mar-Apr;7(2):92-8 [PMID: 24231159]
  48. FEBS Lett. 2004 Nov 5;577(1-2):105-10 [PMID: 15527769]
  49. J Chem Theory Comput. 2015 Feb 10;11(2):591-9 [PMID: 26580916]
  50. J Photochem Photobiol B. 2017 Sep;174:18-26 [PMID: 28750319]
  51. J Am Chem Soc. 2017 Jan 25;139(3):1106-1119 [PMID: 28032762]

Grants

  1. PTDC/QUI-QFI/2870/2020/Fundação para a Ciência e Tecnologia
  2. UIDB/000081/2020/Fundação para a Ciência e Tecnologia
  3. UIDP/00081/2020/Fundação para a Ciência e Tecnologia
  4. LA/P/0056/2020/Fundação para a Ciência e Tecnologia
  5. CEECINST/00069/2021/Fundação para a Ciência e Tecnologia
  6. SRFH/BD/143211/2019/Fundação para a Ciência e Tecnologia

Word Cloud

Created with Highcharts 10.0.0chemiexcitationCLprocessesreactionssystemsCoelenterazinechemiluminescenceapplicationsmechanismsbehindefficienttheoreticalinsightrelativeefficiencyspeciesexplainBioluminescenceBLremarkablelightemittedduebiochemicalattractedsignificantattentionvariousbiosensingbioimagingbiomedicinerelevantwell-studiedBL/CLmarineimidazopyrazine-basedcompoundsamongprimeexampleUnderstandingessentialoptimizationdevelopmentpracticalfluorinatedanalogstudiedusingexperimentalapproachesobtainExperimentalanalysisrevealedbasicconditionsacidiconesattributedhigheranionicdioxetanoneintermediatecorrespondingneutralHowevercalculationsindicatedsimilarlyassociatedelectronchargetransfertypicallyusedneitherprocessappearsableefficienciesobservedconclusionstudyprovidesimidazopyrazinone-basedInvestigationChemiluminescentReactionFluorinatedAnalogMarinebioluminescencecoelenterazine

Similar Articles

Cited By

No available data.