Arnicolide C Suppresses Tumor Progression by Targeting 14-3-3θ in Breast Cancer.

Zhengrui Liu, Xiaodan Lyu, Jiaxu Chen, Benteng Zhang, Siman Xie, Yan Yuan, Li Sun, Shengtao Yuan, Hong Yu, Jian Ding, Mei Yang
Author Information
  1. Zhengrui Liu: Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.
  2. Xiaodan Lyu: Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.
  3. Jiaxu Chen: College of Pharmacy, Lanzhou University, Lanzhou 730000, China.
  4. Benteng Zhang: Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.
  5. Siman Xie: Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.
  6. Yan Yuan: Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
  7. Li Sun: Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.
  8. Shengtao Yuan: Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China.
  9. Hong Yu: Department of Pathology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou 225300, China.
  10. Jian Ding: Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China.
  11. Mei Yang: Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.

Abstract

Arnicolide C, which is isolated from , has excellent antitumor effects. However, the potential impacts and related mechanisms of action of arnicolide C in breast cancer remain unknown. The viability of breast cancer cells was measured using MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and colony formation assays. For analysis of apoptosis and the cell cycle, flow cytometry was used. A molecular docking approach was used to explore the possible targets of arnicolide C. Western blot analysis was used to detect changes in the expression of 14-3-3θ and proteins in related pathways after arnicolide C treatment in breast cancer cells. The anti-breast cancer effect of arnicolide C in vivo was evaluated by establishing cell-derived xenograft (CDX) and patient-derived xenograft (PDX) models. Arnicolide C inhibited proliferation, increased apoptosis, and induced G1 arrest. In particular, molecular docking analysis indicated that arnicolide C binds to 14-3-3θ. Arnicolide C reduced 14-3-3θ expression and inhibited its downstream signaling pathways linked to cell proliferation. Similar results were obtained in the CDX and PDX models. Arnicolide C can have an anti-breast cancer effect both in vitro and in vivo and can induce cell cycle arrest and increase apoptosis in vitro. The molecular mechanism may be related to the effect of arnicolide C on the expression level of 14-3-3θ. However, the specific mechanism through which arnicolide C affects 14-3-3θ protein expression still needs to be determined.

Keywords

References

  1. Cell Biol Toxicol. 2021 Aug;37(4):515-529 [PMID: 33131013]
  2. J Ethnopharmacol. 2022 Jun 28;292:115027 [PMID: 35091011]
  3. Asian Pac J Cancer Prev. 2014;15(8):3513-8 [PMID: 24870749]
  4. Mol Cell Biol. 2010 Mar;30(6):1508-27 [PMID: 20086099]
  5. Phytomedicine. 2022 Nov;106:154397 [PMID: 36084403]
  6. J Biol Chem. 2002 Feb 1;277(5):3061-4 [PMID: 11709560]
  7. Cancer Biol Ther. 2022 Dec 31;23(1):265-280 [PMID: 35387560]
  8. Anticancer Res. 2022 Jan;42(1):519-530 [PMID: 34969762]
  9. Molecules. 2007 Jan 27;12(8):1606-13 [PMID: 17960076]
  10. Phytochemistry. 1998 Feb;47(4):631-4 [PMID: 9461679]
  11. Clin Exp Pharmacol Physiol. 2022 Mar;49(3):370-379 [PMID: 34757658]
  12. Semin Cell Dev Biol. 2011 Sep;22(7):688-95 [PMID: 21945648]
  13. Oxid Med Cell Longev. 2019 Apr 3;2019:9421037 [PMID: 31139305]
  14. Biomed Res Int. 2020 Jun 22;2020:3740418 [PMID: 32685476]
  15. Br J Pharmacol. 2023 Nov 5;: [PMID: 37926864]
  16. Biomed Pharmacother. 2018 Feb;98:619-625 [PMID: 29289836]
  17. Proc Natl Acad Sci U S A. 2022 Oct 25;119(43):e2209211119 [PMID: 36252018]
  18. Cell Death Dis. 2022 Jun 4;13(6):524 [PMID: 35665750]
  19. Annu Rev Pharmacol Toxicol. 2000;40:617-47 [PMID: 10836149]
  20. Chin Med. 2015 Sep 18;10:26 [PMID: 26388933]
  21. Kaohsiung J Med Sci. 2019 Jul;35(7):408-416 [PMID: 31001932]
  22. CA Cancer J Clin. 2021 May;71(3):209-249 [PMID: 33538338]
  23. Eur J Med Chem. 2022 Aug 5;238:114402 [PMID: 35525080]
  24. Nat Prod Res. 2023 Aug-Sep;37(17):2969-2972 [PMID: 36323306]
  25. PLoS One. 2013;8(3):e57968 [PMID: 23483955]
  26. PLoS One. 2012;7(12):e50895 [PMID: 23236401]
  27. Phytomedicine. 2019 Apr;57:117-128 [PMID: 30668314]
  28. Proc Natl Acad Sci U S A. 2006 Nov 14;103(46):17237-42 [PMID: 17085597]
  29. Front Pharmacol. 2021 Sep 20;12:738139 [PMID: 34616300]
  30. EBioMedicine. 2019 Feb;40:163-175 [PMID: 30686753]
  31. Breast Cancer. 2019 Sep;26(5):581-593 [PMID: 30830684]
  32. Oncol Rep. 2013 Dec;30(6):2976-82 [PMID: 24065186]
  33. Adv Protein Chem Struct Biol. 2021;125:73-120 [PMID: 33931145]
  34. Oncotarget. 2014 Jan 15;5(1):249-57 [PMID: 24371149]
  35. Nat Rev Cancer. 2003 Dec;3(12):931-43 [PMID: 14737123]
  36. Mini Rev Med Chem. 2021;21(3):273-287 [PMID: 33087028]
  37. Carcinogenesis. 2021 Feb 25;42(2):232-242 [PMID: 32816038]
  38. J Ethnopharmacol. 2013 May 20;147(2):395-405 [PMID: 23506988]
  39. Mol Med Rep. 2014 Dec;10(6):3145-50 [PMID: 25310086]
  40. Plants (Basel). 2022 Jun 23;11(13): [PMID: 35807611]
  41. J Biol Chem. 1999 Apr 2;274(14):9258-64 [PMID: 10092600]
  42. Cell Biol Int. 2019 Jun;43(6):582-592 [PMID: 30958602]
  43. Cell. 1997 Dec 26;91(7):961-71 [PMID: 9428519]
  44. Cell. 1996 Mar 22;84(6):889-97 [PMID: 8601312]
  45. J Neurochem. 1968 Apr;15(4):265-72 [PMID: 4966699]
  46. Chem Biodivers. 2007 Dec;4(12):2810-6 [PMID: 18081091]
  47. Biochem Pharmacol. 2020 Feb;172:113752 [PMID: 31836387]
  48. Cancer Epidemiol. 2012 Dec;36(6):533-6 [PMID: 22658894]
  49. Cell Death Discov. 2020 Sep 21;6(1):92 [PMID: 33024577]
  50. J Hepatol. 2016 Nov;65(5):953-962 [PMID: 27210426]
  51. Mol Med Rep. 2018 Feb;17(2):2493-2500 [PMID: 29207109]

Grants

  1. 82272668/National Natural Science Foundation of China
  2. 82304541/National Natural Science Foundation of China
  3. BK20221036/Natural Science Foundation of Jiangsu Province
  4. 1412200065/Jiangsu Funding Program for Excellent Postdoctoral Talent

Word Cloud

Created with Highcharts 10.0.0Carnicolide14-3-3θArnicolidecancerbreastcellexpressionrelatedanalysisapoptosisusedmoleculareffectPDXproliferationHowevercellscycledockingpathwaysanti-breastvivoxenograftCDXmodelsinhibitedarrestcanvitromechanismisolatedexcellentantitumoreffectspotentialimpactsmechanismsactionremainunknownviabilitymeasuredusingMTT3-45-Dimethylthiazol-2-yl-25-diphenyltetrazoliumbromideassaycolonyformationassaysflowcytometryapproachexplorepossibletargetsWesternblotdetectchangesproteinstreatmentevaluatedestablishingcell-derivedpatient-derivedincreasedinducedG1particularindicatedbindsreduceddownstreamsignalinglinkedSimilarresultsobtainedinduceincreasemaylevelspecificaffectsproteinstillneedsdeterminedSuppressesTumorProgressionTargetingBreastCancerneoplasms

Similar Articles

Cited By