Label-Free Imaging of DNA Interactions with 2D Materials.

Jenny Sülzle, Wayne Yang, Yuta Shimoda, Nathan Ronceray, Eveline Mayner, Suliana Manley, Aleksandra Radenovic
Author Information
  1. Jenny Sülzle: Institute of Physics and Institute of Bioengineering, Laboratory of Experimental Biophysics (LEB), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland.
  2. Wayne Yang: Institute of Bioengineering, Laboratory of Nanoscale Biology (LBEN), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland.
  3. Yuta Shimoda: Institute of Bioengineering, Laboratory of Nanoscale Biology (LBEN), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland.
  4. Nathan Ronceray: Institute of Bioengineering, Laboratory of Nanoscale Biology (LBEN), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland.
  5. Eveline Mayner: Institute of Bioengineering, Laboratory of Nanoscale Biology (LBEN), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland.
  6. Suliana Manley: Institute of Physics and Institute of Bioengineering, Laboratory of Experimental Biophysics (LEB), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland. ORCID
  7. Aleksandra Radenovic: Institute of Bioengineering, Laboratory of Nanoscale Biology (LBEN), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland. ORCID

Abstract

Two-dimensional (2D) materials offer potential as substrates for biosensing devices, as their properties can be engineered to tune interactions between the surface and biomolecules. Yet, not many methods can measure these interactions in a liquid environment without introducing labeling agents such as fluorophores. In this work, we harness interferometric scattering (iSCAT) microscopy, a label-free imaging technique, to investigate the interactions of single molecules of long dsDNA with 2D materials. The millisecond temporal resolution of iSCAT allows us to capture the transient interactions and to observe the dynamics of unlabeled DNA binding to a hexagonal boron nitride (hBN) surface in solution for extended periods (including a fraction of 10%, of trajectories lasting longer than 110 ms). Using a focused ion beam technique to engineer defects, we find that DNA binding affinity is enhanced at defects; when exposed to long lanes, DNA binds preferentially at the lane edges. Overall, we demonstrate that iSCAT imaging is a useful tool to study how biomolecules interact with 2D materials, a key component in engineering future biosensors.

References

  1. Nucleic Acids Res. 2020 Sep 25;48(17):e97 [PMID: 32756898]
  2. Sci Rep. 2017 Nov 8;7(1):15096 [PMID: 29118413]
  3. Langmuir. 2017 Jan 17;33(2):630-637 [PMID: 28025885]
  4. Small. 2014 Aug 27;10(16):3257-61 [PMID: 24740866]
  5. Nano Lett. 2010 Aug 11;10(8):3163-7 [PMID: 20608744]
  6. J Chem Phys. 2007 Sep 14;127(10):105108 [PMID: 17867787]
  7. Opt Express. 2020 Aug 31;28(18):25969-25988 [PMID: 32906875]
  8. ACS Nano. 2020 Aug 25;14(8):9637-9643 [PMID: 32806056]
  9. Phys Rev Lett. 2004 Jul 16;93(3):037401 [PMID: 15323866]
  10. Nucleic Acids Res. 2010 Oct;38(19):6526-32 [PMID: 20511588]
  11. Chem Sci. 2019 Sep 23;10(43):10010-10017 [PMID: 32055358]
  12. Phys Chem Chem Phys. 2013 Jul 14;15(26):10767-76 [PMID: 23689542]
  13. Nano Lett. 2011 Oct 12;11(10):4232-8 [PMID: 21919532]
  14. Analyst. 2015 May 7;140(9):3210-5 [PMID: 25760806]
  15. Proc Natl Acad Sci U S A. 2013 Oct 15;110(42):16748-53 [PMID: 24082108]
  16. Nano Lett. 2010 Aug 11;10(8):2915-21 [PMID: 20698604]
  17. Science. 2012 Apr 6;336(6077):61-4 [PMID: 22491849]
  18. Nano Lett. 2022 Oct 12;22(19):7874-7881 [PMID: 36165777]
  19. Nat Commun. 2023 Apr 7;14(1):1962 [PMID: 37029107]
  20. ACS Nano. 2015 Feb 24;9(2):1740-8 [PMID: 25635821]
  21. ACS Nano. 2017 Feb 28;11(2):1937-1945 [PMID: 28125779]
  22. Nat Nanotechnol. 2019 Sep;14(9):858-865 [PMID: 31384038]
  23. Nat Nanotechnol. 2010 Feb;5(2):160-5 [PMID: 20023645]
  24. Nanomaterials (Basel). 2016 Jun 06;6(6): [PMID: 28335237]
  25. Rev Sci Instrum. 2010 Jan;81(1):014301 [PMID: 20113116]
  26. Nat Commun. 2019 Jan 2;10(1):3 [PMID: 30602774]
  27. Sci Adv. 2022 Sep 2;8(35):eabm7935 [PMID: 36044567]
  28. Commun Chem. 2023 Jun 5;6(1):108 [PMID: 37277463]
  29. Nat Commun. 2021 Feb 16;12(1):1053 [PMID: 33594049]
  30. ACS Nano. 2022 Mar 22;16(3):3695-3703 [PMID: 35254820]
  31. Science. 2018 Apr 27;360(6387):423-427 [PMID: 29700264]
  32. Nat Mater. 2023 Oct;22(10):1236-1242 [PMID: 37652991]
  33. J Phys Chem B. 2023 Apr 27;127(16):3737-3745 [PMID: 37074024]
  34. Adv Mater. 2023 Oct;35(41):e2303152 [PMID: 37670535]
  35. Nat Nanotechnol. 2016 Feb;11(2):127-36 [PMID: 26839258]
  36. Nanotechnology. 2018 Apr 6;29(14):145302 [PMID: 29384130]
  37. Nano Lett. 2009 Jun;9(6):2460-5 [PMID: 19408927]
  38. Nano Lett. 2012 Aug 8;12(8):4117-23 [PMID: 22780094]
  39. Nat Methods. 2023 Mar;20(3):442-447 [PMID: 36849549]
  40. Nano Lett. 2013 Sep 11;13(9):4556-61 [PMID: 23944844]
  41. Nature. 2010 Sep 9;467(7312):190-3 [PMID: 20720538]
  42. Nat Commun. 2022 May 13;13(1):2186 [PMID: 35562332]
  43. Nano Lett. 2015 Mar 11;15(3):1867-75 [PMID: 25664483]
  44. Nat Methods. 2021 Oct;18(10):1239-1246 [PMID: 34608318]
  45. Opt Express. 2006 Jan 9;14(1):405-14 [PMID: 19503354]
  46. Phys Rev E. 2016 Feb;93(2):022401 [PMID: 26986356]
  47. Methods Mol Biol. 2018;1672:261-294 [PMID: 29043630]
  48. Nano Lett. 2019 Jul 10;19(7):4257-4262 [PMID: 31251640]
  49. Nat Protoc. 2019 Apr;14(4):1130-1168 [PMID: 30903110]
  50. Nat Nanotechnol. 2018 Dec;13(12):1126-1131 [PMID: 30224794]
  51. Nano Lett. 2015 Jan 14;15(1):745-52 [PMID: 25522780]
  52. Nat Nanotechnol. 2010 Dec;5(12):868-73 [PMID: 21076404]
  53. Nano Lett. 2012 Dec 12;12(12):6453-8 [PMID: 23171353]
  54. Nano Lett. 2017 Jul 12;17(7):4223-4230 [PMID: 28592108]
  55. Nat Commun. 2013;4:2619 [PMID: 24126320]
  56. Adv Drug Deliv Rev. 2022 Jul;186:114336 [PMID: 35597306]
  57. Acc Mater Res. 2023 Mar 14;4(4):307-310 [PMID: 37151913]
  58. Nat Nanotechnol. 2011 Oct 23;6(11):695-704 [PMID: 22020120]
  59. Small. 2013 Oct 11;9(19):3253-8 [PMID: 23554324]

Word Cloud

Created with Highcharts 10.0.02DinteractionsDNAmaterialsiSCATcansurfacebiomoleculesimagingtechniquelongbindingdefectsTwo-dimensionalofferpotentialsubstratesbiosensingdevicespropertiesengineeredtuneYetmanymethodsmeasureliquidenvironmentwithoutintroducinglabelingagentsfluorophoresworkharnessinterferometricscatteringmicroscopylabel-freeinvestigatesinglemoleculesdsDNAmillisecondtemporalresolutionallowsuscapturetransientobservedynamicsunlabeledhexagonalboronnitridehBNsolutionextendedperiodsincludingfraction10%trajectorieslastinglonger110msUsingfocusedionbeamengineerfindaffinityenhancedexposedlanesbindspreferentiallylaneedgesOveralldemonstrateusefultoolstudyinteractkeycomponentengineeringfuturebiosensorsLabel-FreeImagingInteractionsMaterials

Similar Articles

Cited By