Computational insights on asymmetrical and receptor-mediated chunking: implications for OCD and Schizophrenia.

Krisztina Szalisznyó, David N Silverstein
Author Information
  1. Krisztina Szalisznyó: Department of Medical Sciences, Psychiatry, Uppsala University Hospital, Uppsala University, 751 85 Uppsala, Sweden. ORCID
  2. David N Silverstein: Agora for Biosystems, Sigtuna Foundation, Sigtuna, Sweden.

Abstract

Repetitive thoughts and motor programs including perseveration are bridge symptoms characteristic of obsessive compulsive disorder (OCD), Schizophrenia and in the co-morbid overlap of these conditions. The above pathologies are sensitive to altered activation and kinetics of dopamine and receptors that differently influence sequence learning and recall. Recognizing start and stop elements of motor and cognitive behaviors has crucial importance. During chunking, frequent components of temporal strings are concatenated into single units. We extended a published computational model (Asabuki et al. 2018), where two populations of neurons are connected and simulated in a reservoir computing framework. These neural pools were adopted to represent D and D striatal neuronal populations. We investigated how specific neural and striatal circuit parameters can influence start/stop signaling and found that asymmetric intra-network connection probabilities, synaptic weights and differential time constants may contribute to signaling of start/stop elements within learned sequences. Asymmetric coupling between the striatal and neural populations was also demonstrated to be beneficial. Our modeling results predict that dynamical differences between the two dopaminergic striatal populations and the interaction between them may play complementary roles in chunk boundary signaling. Start and stop dichotomies can arise from the larger circuit dynamics as well, since neural and intra-striatal connections only partially support a clear division of labor.

Keywords

References

  1. J Affect Disord. 2009 Apr;114(1-3):321-6 [PMID: 18706700]
  2. Neuroreport. 2000 Nov 9;11(16):3559-63 [PMID: 11095518]
  3. Behav Brain Res. 2014 May 1;264:207-29 [PMID: 24406720]
  4. Exp Brain Res. 2010 Sep;205(3):375-85 [PMID: 20680249]
  5. Behav Brain Res. 2014 Jul 15;268:48-54 [PMID: 24698799]
  6. J Child Adolesc Psychopharmacol. 2015 Feb;25(1):76-85 [PMID: 25658702]
  7. Eur Neuropsychopharmacol. 1995;5 Suppl:25-30 [PMID: 8775755]
  8. Neuroscience. 2014 Dec 12;282:156-75 [PMID: 25062777]
  9. Annu Rev Neurosci. 2011;34:441-66 [PMID: 21469956]
  10. Neurosci Lett. 2019 Jan 19;691:26-34 [PMID: 29518542]
  11. Eur Arch Psychiatry Clin Neurosci. 2020 Jun;270(4):451-459 [PMID: 31119377]
  12. Trends Neurosci. 2007 May;30(5):203-10 [PMID: 17400301]
  13. Brain Res. 2010 Mar 31;1322:92-101 [PMID: 20114036]
  14. Transl Psychiatry. 2017 Mar 7;7(3):e1050 [PMID: 28267149]
  15. Neurosci Biobehav Rev. 2019 Dec;107:279-295 [PMID: 31541637]
  16. Prog Brain Res. 2007;160:313-29 [PMID: 17499122]
  17. Behav Brain Res. 2009 Mar 2;198(1):231-9 [PMID: 19041898]
  18. J Neurosci. 2010 Mar 3;30(9):3499-507 [PMID: 20203210]
  19. PLoS One. 2013;8(3):e57054 [PMID: 23469183]
  20. Annu Rev Neurosci. 2019 Jul 8;42:459-483 [PMID: 31018098]
  21. Nat Neurosci. 2011 Mar;14(3):366-72 [PMID: 21317906]
  22. eNeuro. 2019 Mar 13;6(2): [PMID: 30899778]
  23. Neuroimage. 2020 Jan 1;204:116243 [PMID: 31610297]
  24. Neuron. 2009 Aug 27;63(4):544-57 [PMID: 19709635]
  25. Learn Mem. 2016 Feb 16;23(3):108-12 [PMID: 26884228]
  26. Nature. 2022 Jul;607(7919):521-526 [PMID: 35794480]
  27. PLoS Comput Biol. 2015 Apr 24;11(4):e1004233 [PMID: 25910230]
  28. Cogn Neurodyn. 2021 Aug;15(4):661-674 [PMID: 34367367]
  29. Synapse. 2000 Sep 1;37(3):205-15 [PMID: 10881042]
  30. Nat Commun. 2018 Aug 21;9(1):3339 [PMID: 30131490]
  31. Neuropsychopharmacology. 2013 Apr;38(5):701-14 [PMID: 23232445]
  32. Neuron. 2010 Mar 11;65(5):585-96 [PMID: 20223196]
  33. PLoS Comput Biol. 2018 Oct 8;14(10):e1006400 [PMID: 30296262]
  34. Behav Processes. 2006 Feb 28;71(2-3):241-9 [PMID: 16246504]
  35. J Neurosci. 2008 May 21;28(21):5504-12 [PMID: 18495884]
  36. Elife. 2015 Dec 25;4: [PMID: 26705698]
  37. Biol Psychiatry. 2008 Nov 1;64(9):739-49 [PMID: 18620336]
  38. J Physiol. 2019 Nov;597(21):5265-5293 [PMID: 31531863]
  39. J Theor Biol. 2019 Jul 21;473:80-94 [PMID: 30738051]
  40. Front Comput Neurosci. 2015 Mar 11;9:31 [PMID: 25814948]
  41. Synapse. 1991 May;8(1):38-40 [PMID: 1871679]
  42. Psychiatry Res. 2010 Jul 30;183(1):85-8 [PMID: 20538439]
  43. Neurobiol Learn Mem. 1998 Jul-Sep;70(1-2):119-36 [PMID: 9753592]
  44. J Neurosci. 2011 Jan 26;31(4):1183-92 [PMID: 21273403]
  45. Behav Brain Res. 2012 Apr 21;230(1):1-10 [PMID: 22309982]
  46. Neuron. 2017 Mar 22;93(6):1436-1450.e8 [PMID: 28285820]
  47. Neuron. 2017 Oct 11;96(2):267-284 [PMID: 29024654]
  48. J Neurosci. 2010 Oct 20;30(42):14273-83 [PMID: 20962248]
  49. J Neurosci. 2018 Jan 24;38(4):937-961 [PMID: 29229708]
  50. J Neurosci. 2012 Feb 15;32(7):2398-409 [PMID: 22396414]
  51. BMC Biol. 2005 Feb 14;3:4 [PMID: 15710042]
  52. J Neurosci. 2013 Aug 28;33(35):14075-86 [PMID: 23986243]
  53. Neuropsychopharmacology. 2020 Nov;45(12):2087-2097 [PMID: 32811899]
  54. Eur Neuropsychopharmacol. 2013 Nov;23(11):1423-31 [PMID: 23876376]
  55. Nat Neurosci. 2014 Mar;17(3):423-30 [PMID: 24464039]
  56. Nat Commun. 2016 Jul 11;7:12176 [PMID: 27397420]
  57. Nature. 2005 Oct 20;437(7062):1158-61 [PMID: 16237445]
  58. Schizophr Bull. 1997;23(1):63-74 [PMID: 9050113]
  59. Eur J Neurosci. 2019 Mar;49(6):737-753 [PMID: 29917291]
  60. Pharmacol Biochem Behav. 2003 Mar;74(4):833-9 [PMID: 12667897]
  61. Q J Nucl Med. 1998 Sep;42(3):211-21 [PMID: 9796369]
  62. J Theor Biol. 2009 Feb 21;256(4):547-60 [PMID: 18976672]
  63. Proc Natl Acad Sci U S A. 2017 May 30;114(22):5719-5724 [PMID: 28507136]
  64. J Neurosci. 1999 Jun 15;19(12):5044-53 [PMID: 10366637]
  65. Nature. 2010 Jul 22;466(7305):457-62 [PMID: 20651684]
  66. J Neurosci. 2008 Oct 22;28(43):10814-24 [PMID: 18945889]
  67. Transl Psychiatry. 2022 Jan 10;12(1):5 [PMID: 35013105]
  68. Neurosci Biobehav Rev. 2017 May;76(Pt A):67-76 [PMID: 28434589]
  69. J Neurosci. 2020 Apr 1;40(14):2868-2881 [PMID: 32071139]
  70. Schizophr Res. 2003 Jun 1;61(2-3):315-21 [PMID: 12729883]
  71. Neuron. 2015 Oct 7;88(1):2-19 [PMID: 26447569]
  72. Brain Lang. 2017 Jan;164:53-62 [PMID: 27792887]
  73. Front Psychiatry. 2021 Oct 01;12:687062 [PMID: 34658945]
  74. Neuropsychopharmacology. 2003 Jan;28(1):77-85 [PMID: 12496943]
  75. Nature. 2013 Feb 14;494(7436):238-42 [PMID: 23354054]
  76. Proc Natl Acad Sci U S A. 2019 May 28;116(22):11038-11047 [PMID: 31072930]

Word Cloud

Created with Highcharts 10.0.0neuralstriatalpopulationssignalingmotorOCDreceptorsinfluencestopelementstwocomputingcircuitcanstart/stopRepetitivethoughtsprogramsincludingperseverationbridgesymptomscharacteristicobsessivecompulsivedisorderschizophreniaco-morbidoverlapconditionspathologiessensitivealteredactivationkineticsdopaminedifferentlysequencelearningrecallRecognizingstartcognitivebehaviorscrucialimportancechunkingfrequentcomponentstemporalstringsconcatenatedsingleunitsextendedpublishedcomputationalmodelAsabukiet al2018populations ofneuronsconnectedsimulatedreservoirframeworkpoolsadoptedrepresent D and Dneuronalinvestigatedspecificparametersfoundasymmetricintra-networkconnectionprobabilitiessynapticweightsdifferentialtimeconstantsmaycontributewithinlearnedsequencesAsymmetriccouplingalsodemonstratedbeneficialmodelingresultspredictdynamicaldifferencesdopaminergicinteractionthem mayplaycomplementaryroleschunkboundaryStartdichotomiesariselargerdynamicswellsinceintra-striatalconnectionspartiallysupportcleardivisionlaborComputationalinsightsasymmetricalreceptor-mediatedchunking:implicationsSchizophreniaChunkingDopamineReservoirStriatum

Similar Articles

Cited By

No available data.