Examining the low-voltage fast seizure-onset and its response to optogenetic stimulation in a biophysical network model of the hippocampus.

Liyuan Zhang, Zhiyuan Ma, Ying Yu, Bao Li, Shuicai Wu, Youjun Liu, Gerold Baier
Author Information
  1. Liyuan Zhang: Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124 China.
  2. Zhiyuan Ma: Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124 China.
  3. Ying Yu: School of Engineering Medicine, Beihang University, Beijing, 100191 China.
  4. Bao Li: Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124 China.
  5. Shuicai Wu: Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124 China.
  6. Youjun Liu: Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124 China.
  7. Gerold Baier: Cell and Developmental Biology, University College London, London, WC1E 6BT UK.

Abstract

Low-voltage fast (LVF) seizure-onset is one of the two frequently observed temporal lobe seizure-onset patterns. Depth electroencephalogram profile analysis illustrated that the peak amplitude of LVF onset was deep temporal areas, e.g., hippocampus. However, the specific dynamic transition mechanisms between normal hippocampal rhythmic activity and LVF seizure-onset remain unclear. Recently, the optogenetic approach to gain control over epileptic hyper-excitability both in vitro and in vivo has become a novel noninvasive modulation strategy. Here, we combined biophysical modeling to study LVF dynamics following changes in crucial physiological parameters, and investigated the potential optogenetic intervention mechanism for both excitatory and inhibitory control. In an Ammon's horn 3 (CA3) biophysical model with light-sensitive protein channelrhodopsin 2 (ChR2), we found that the cooperative effects of excessive extracellular potassium concentration of parvalbumin-positive (PV+) inhibitory interneurons and synaptic links could induce abundant types of discharges of the hippocampus, and lead to transitions from gamma oscillations to LVF seizure-onset. Simulations of optogenetic stimulation revealed that the LVF seizure-onset and morbid fast spiking could not be eliminated by targeting PV+ neurons, whereas the epileptic network was more sensitive to the excitatory control of principal neurons with strong optogenetic currents. We illustrate that in the epileptic hippocampal network, the trajectories of the normal and the seizure state are in close vicinity and optogenetic perturbations therefore may result in transitions. The network model system developed in this study represents a scientific instrument to disclose the underlying principles of LVF, to characterize the effects of optogenetic neuromodulation, and to guide future treatment for specific types of seizures.

Keywords

References

  1. Nat Rev Neurosci. 2007 Jan;8(1):45-56 [PMID: 17180162]
  2. Front Comput Neurosci. 2011 Mar 10;5:11 [PMID: 21441986]
  3. Cogn Neurodyn. 2022 Jun;16(3):667-681 [PMID: 35603050]
  4. eNeuro. 2017 Aug 7;4(4): [PMID: 28791333]
  5. J Neurosci. 2012 Sep 19;32(38):13264-72 [PMID: 22993442]
  6. Photochem Photobiol. 2009 Jan-Feb;85(1):400-11 [PMID: 19161406]
  7. Nat Rev Neurosci. 2008 Aug;9(8):626-37 [PMID: 18594562]
  8. J Physiol. 1952 Apr;116(4):449-72 [PMID: 14946713]
  9. Neural Netw. 2022 May;149:1-17 [PMID: 35180461]
  10. Neurobiol Dis. 2022 Sep;171:105794 [PMID: 35718264]
  11. PLoS One. 2015 Apr 13;10(4):e0121182 [PMID: 25867083]
  12. J Neurophysiol. 2016 Oct 1;116(4):1694-1704 [PMID: 27486107]
  13. IEEE Trans Neural Syst Rehabil Eng. 2020 Aug;28(8):1856-1865 [PMID: 32746293]
  14. J Comput Neurosci. 2009 Apr;26(2):159-70 [PMID: 19169801]
  15. Exp Neurol. 2013 Oct;248:72-84 [PMID: 23707218]
  16. J Neurosci. 1996 Oct 15;16(20):6402-13 [PMID: 8815919]
  17. Trends Neurosci. 2004 Apr;27(4):186-93 [PMID: 15046877]
  18. Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):13940-5 [PMID: 14615590]
  19. Proc Natl Acad Sci U S A. 2009 Jul 21;106(29):12162-7 [PMID: 19581573]
  20. Nat Commun. 2012;3:1060 [PMID: 22968706]
  21. Ann Neurol. 2016 Mar;79(3):354-65 [PMID: 26605509]
  22. Nonlinear Biomed Phys. 2007 Jul 05;1(1):3 [PMID: 17908336]
  23. Chaos. 2020 Oct;30(10):103114 [PMID: 33138464]
  24. Comput Methods Programs Biomed. 2020 Oct;195:105665 [PMID: 32736006]
  25. Phys Rev E. 2017 Apr;95(4-1):042323 [PMID: 28505854]
  26. J Comput Neurosci. 2003 Jan-Feb;14(1):33-54 [PMID: 12435923]
  27. Front Comput Neurosci. 2020 May 28;14:47 [PMID: 32547379]
  28. J Math Biol. 2018 Feb;76(3):567-608 [PMID: 28664220]
  29. J Physiol. 2013 Feb 15;591(4):787-97 [PMID: 23184516]
  30. Front Comput Neurosci. 2013 Feb 05;7:3 [PMID: 23386827]
  31. Epilepsia. 2016 May;57(5):679-87 [PMID: 27061793]
  32. Nat Neurosci. 2005 Sep;8(9):1263-8 [PMID: 16116447]
  33. Front Neurosci. 2018 Aug 07;12:521 [PMID: 30131668]
  34. Science. 2009 Jul 24;325(5939):412-3 [PMID: 19628854]
  35. Nat Rev Neurosci. 2009 Mar;10(3):186-98 [PMID: 19190637]
  36. eNeuro. 2014 Dec;1(1): [PMID: 25599088]
  37. Epilepsia. 2009 Apr;50(4):598-604 [PMID: 19055491]
  38. Proc Natl Acad Sci U S A. 2013 Sep 10;110(37):15073-8 [PMID: 23980149]
  39. J Neurosci. 2020 Oct 7;40(41):7811-7836 [PMID: 32913107]
  40. Bull Math Biol. 2013 Nov;75(11):2208-40 [PMID: 24026336]
  41. Epilepsia. 2000 Mar;41(3):297-307 [PMID: 10714401]
  42. J Comput Neurosci. 2011 Aug;31(1):87-103 [PMID: 21174227]
  43. Ann Neurol. 2015 Mar;77(3):541-6 [PMID: 25546300]
  44. Proc Natl Acad Sci U S A. 1998 Feb 3;95(3):1259-64 [PMID: 9448319]
  45. Proc Natl Acad Sci U S A. 2011 Mar 29;108(13):5419-24 [PMID: 21383177]
  46. Nat Neurosci. 2015 Mar;18(3):331-8 [PMID: 25710834]
  47. Science. 1999 Oct 15;286(5439):509-12 [PMID: 10521342]
  48. Nat Commun. 2013;4:1376 [PMID: 23340416]
  49. Ann Neurol. 2019 Nov;86(5):714-728 [PMID: 31393618]
  50. Neural Comput. 2003 Mar;15(3):509-38 [PMID: 12620157]
  51. Science. 2009 Dec 4;326(5958):1419-24 [PMID: 19965761]
  52. Neuroscience. 2021 Dec 15;479:1-21 [PMID: 34710537]
  53. Ann Neurol. 2012 Mar;71(3):342-52 [PMID: 22451202]
  54. Bioengineered. 2021 Dec;12(1):2603-2615 [PMID: 34115572]
  55. Cogn Neurodyn. 2016 Oct;10(5):405-14 [PMID: 27668019]
  56. Epilepsy Res. 2003 Feb;53(1-2):65-80 [PMID: 12576169]
  57. Neurosci Lett. 2018 Feb 22;667:66-74 [PMID: 28115239]
  58. Prog Neurobiol. 2011 Oct;95(2):104-32 [PMID: 21802488]
  59. Eur J Neurosci. 2012 Jul;36(2):2260-72 [PMID: 22805070]
  60. Neuron. 2011 Aug 25;71(4):695-709 [PMID: 21867885]
  61. J Neurophysiol. 2012 Jun;107(12):3235-45 [PMID: 22442566]
  62. Elife. 2020 Jul 21;9: [PMID: 32691734]
  63. Epileptic Disord. 2013 Dec;15(4):392-9 [PMID: 24169380]
  64. J Neurophysiol. 2013 Jul;110(2):441-55 [PMID: 23615549]
  65. Front Comput Neurosci. 2021 Apr 01;15:630271 [PMID: 33867962]
  66. Neurobiol Dis. 2019 Apr;124:396-407 [PMID: 30590178]
  67. Nat Neurosci. 2011 May;14(5):635-41 [PMID: 21441925]
  68. J Comput Neurosci. 2022 Feb;50(1):33-49 [PMID: 35031915]
  69. J Neurophysiol. 2016 Jun 1;115(6):3229-37 [PMID: 27075542]
  70. Hippocampus. 2020 Dec;30(12):1356-1370 [PMID: 33112474]

Word Cloud

Created with Highcharts 10.0.0LVFseizure-onsetoptogeneticfastnetworkhippocampuscontrolepilepticbiophysicalinhibitorymodelstimulationLow-voltagetemporalspecificnormalhippocampalstudyexcitatoryeffectstypestransitionsneuronsonetwofrequentlyobservedlobepatternsDepthelectroencephalogramprofileanalysisillustratedpeakamplitudeonsetdeepareasegHoweverdynamictransitionmechanismsrhythmicactivityremainunclearRecentlyapproachgainhyper-excitabilityvitrovivobecomenovelnoninvasivemodulationstrategycombinedmodelingdynamicsfollowingchangescrucialphysiologicalparametersinvestigatedpotentialinterventionmechanismAmmon'shorn3CA3light-sensitiveproteinchannelrhodopsin2ChR2foundcooperativeexcessiveextracellularpotassiumconcentrationparvalbumin-positivePV+interneuronssynapticlinksinduceabundantdischargesleadgammaoscillationsSimulationsrevealedmorbidspikingeliminatedtargetingPV+ neuronswhereassensitiveprincipalstrongcurrentsillustratetrajectoriesseizurestateclosevicinityperturbationsthereforemayresultsystemdevelopedrepresentsscientificinstrumentdiscloseunderlyingprinciplescharacterizeneuromodulationguidefuturetreatmentseizuresExamininglow-voltageresponseHippocampusOptogeneticParvalbumin-positiveRhythmicoscillation

Similar Articles

Cited By