KIT ATP-Binding Pocket/Activation Loop Mutations in GI Stromal Tumor: Emerging Mechanisms of Kinase Inhibitor Escape.

Thomas Mühlenberg, Johanna Falkenhorst, Tom Schulz, Benjamin S Fletcher, Alina Teuber, Dawid Krzeciesa, Isabella Klooster, Meijun Lundberg, Lydia Wilson, Jonas Lategahn, Margaret von Mehren, Susanne Grunewald, Alicia Isabell Tüns, Eva Wardelmann, Jason K Sicklick, Mehdi Brahmi, César Serrano, Hans-Ulrich Schildhaus, Sonja Sievers, Jürgen Treckmann, Michael C Heinrich, Chandrajit P Raut, Wen-Bin Ou, Adrian Marino-Enriquez, Suzanne George, Daniel Rauh, Jonathan A Fletcher, Sebastian Bauer
Author Information
  1. Thomas Mühlenberg: Department of Medical Oncology and Sarcoma Center, West German Cancer Center, University Duisburg-Essen, Medical School, Essen, Germany. ORCID
  2. Johanna Falkenhorst: Department of Medical Oncology and Sarcoma Center, West German Cancer Center, University Duisburg-Essen, Medical School, Essen, Germany. ORCID
  3. Tom Schulz: Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany. ORCID
  4. Benjamin S Fletcher: Department of Medical Oncology and Sarcoma Center, West German Cancer Center, University Duisburg-Essen, Medical School, Essen, Germany. ORCID
  5. Alina Teuber: Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany. ORCID
  6. Dawid Krzeciesa: Department of Medical Oncology and Sarcoma Center, West German Cancer Center, University Duisburg-Essen, Medical School, Essen, Germany.
  7. Isabella Klooster: Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA. ORCID
  8. Meijun Lundberg: Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA. ORCID
  9. Lydia Wilson: Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.
  10. Jonas Lategahn: Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany. ORCID
  11. Margaret von Mehren: Department of Hematology and Oncology, Fox Chase Cancer Center, Temple Health System, University, Philadelphia, PA. ORCID
  12. Susanne Grunewald: Department of Medical Oncology and Sarcoma Center, West German Cancer Center, University Duisburg-Essen, Medical School, Essen, Germany.
  13. Alicia Isabell Tüns: Laboratory of Molecular Oncology, Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany. ORCID
  14. Eva Wardelmann: Gerhard Domagk Institute of Pathology, University Hospital Münster, Münster, Germany.
  15. Jason K Sicklick: Department of Surgery, Division of Surgical Oncology, University of California San Diego, San Diego, CA. ORCID
  16. Mehdi Brahmi: Centre Leon Berard, Medical Oncology, Lyon, France. ORCID
  17. César Serrano: Sarcoma Translational Research Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.
  18. Hans-Ulrich Schildhaus: University Hospital Essen, Institute of Pathology, Essen, Germany. ORCID
  19. Sonja Sievers: Compound Management and Screening Center, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
  20. Jürgen Treckmann: University of Duisburg-Essen, Medical School, Department of Visceral and Transplantation Surgery, Essen, Germany.
  21. Michael C Heinrich: Portland VA Health Care System and OHSU Knight Cancer Institute, Portland, OR. ORCID
  22. Chandrajit P Raut: Department of Surgery, Brigham and Women's Hospital, Boston, MA. ORCID
  23. Wen-Bin Ou: Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA. ORCID
  24. Adrian Marino-Enriquez: Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA. ORCID
  25. Suzanne George: Dana-Farber Cancer Institute, Medical Oncology, Boston, MA. ORCID
  26. Daniel Rauh: Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany. ORCID
  27. Jonathan A Fletcher: Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA. ORCID
  28. Sebastian Bauer: Department of Medical Oncology and Sarcoma Center, West German Cancer Center, University Duisburg-Essen, Medical School, Essen, Germany. ORCID

Abstract

PURPOSE: Imatinib resistance in GI stromal tumors (GISTs) is primarily caused by secondary mutations, and clonal heterogeneity of these secondary mutations represents a major treatment obstacle. KIT inhibitors used after imatinib have clinical activity, albeit with limited benefit. Ripretinib is a potent inhibitor of secondary KIT mutations in the activation loop (AL). However, clinical benefit in fourth line remains limited and the molecular mechanisms of ripretinib resistance are largely unknown.
PATIENTS AND METHODS: Progressing lesions of 25 patients with GISTs refractory to ripretinib were sequenced for resistance mutations. Resistant genotypes were validated and characterized using novel cell line models and in silico modeling.
RESULTS: GISTs progressing on ripretinib were enriched for secondary mutations in the ATP-binding pocket (AP), which frequently occur in cis with preexisting AL mutations, resulting in highly resistant AP/AL genotypes. AP/AL mutations were rarely observed in a cohort of progressing GIST samples from the preripretinib era but represented 50% of secondary mutations in patients with tumors resistant to ripretinib. In GIST cell lines harboring secondary AL mutations, the sole genomic escape mechanisms during ripretinib drug selection were AP/AL mutations. Ripretinib and sunitinib synergize against mixed clones with secondary AP or AL mutants but do not suppress clones with AP/AL genotypes.
CONCLUSION: Our findings underscore that KIT remains the central oncogenic driver even in late lines of GIST therapy. KIT-inhibitor combinations may suppress resistance because of secondary mutations. However, the emergence of KIT AP/AL mutations after ripretinib treatment calls for new strategies in the development of next-generation KIT inhibitors.

References

  1. Cancer Discov. 2021 Jan;11(1):108-125 [PMID: 32972961]
  2. BMC Cancer. 2022 May 6;22(1):511 [PMID: 35524239]
  3. Mol Oncol. 2022 Apr;16(8):1761-1774 [PMID: 35194937]
  4. J Clin Oncol. 2021 Oct 1;39(28):3128-3139 [PMID: 34343033]
  5. Lancet Oncol. 2020 Jul;21(7):923-934 [PMID: 32511981]
  6. Oncogene. 2021 Jan;40(1):1-11 [PMID: 33060857]
  7. Ann Oncol. 2023 Jul;34(7):615-625 [PMID: 37105265]
  8. J Clin Oncol. 2006 Oct 10;24(29):4764-74 [PMID: 16954519]
  9. Science. 2003 Jan 31;299(5607):708-10 [PMID: 12522257]
  10. Haematologica. 2018 Jan;103(1):e10-e12 [PMID: 28983061]
  11. Cancer Cell. 2019 May 13;35(5):738-751.e9 [PMID: 31085175]
  12. N Engl J Med. 2016 Jan 7;374(1):54-61 [PMID: 26698910]
  13. World J Gastroenterol. 2006 Apr 14;12(14):2223-8 [PMID: 16610025]
  14. Clin Cancer Res. 2014 Nov 15;20(22):5745-5755 [PMID: 25239608]
  15. Lancet Oncol. 2020 Jul;21(7):935-946 [PMID: 32615108]
  16. Ann Oncol. 2010 Oct;21(10):1990-1998 [PMID: 20507881]
  17. Clin Cancer Res. 2021 Dec 1;27(23):6333-6342 [PMID: 34503977]
  18. Science. 1998 Jan 23;279(5350):577-80 [PMID: 9438854]
  19. Lancet. 2004 Sep 25-Oct 1;364(9440):1127-34 [PMID: 15451219]
  20. Cancer Cell. 2014 Sep 8;26(3):428-442 [PMID: 25132497]
  21. Nat Commun. 2019 Jan 16;10(1):244 [PMID: 30651561]
  22. BMC Cancer. 2022 Dec 13;22(1):1302 [PMID: 36514034]
  23. Lancet. 2006 Oct 14;368(9544):1329-38 [PMID: 17046465]
  24. J Clin Oncol. 2022 Dec 1;40(34):3918-3928 [PMID: 35947817]
  25. Pharmacol Ther. 2018 Nov;191:123-134 [PMID: 29964125]
  26. Cancer. 2005 Feb 15;103(4):821-9 [PMID: 15648083]
  27. Clin Cancer Res. 2018 Nov 1;24(21):5321-5334 [PMID: 30042204]
  28. Mol Cancer Ther. 2019 Nov;18(11):1985-1996 [PMID: 31308077]
  29. Lancet. 2013 Jan 26;381(9863):295-302 [PMID: 23177515]
  30. Lancet Oncol. 2014 Feb;15(2):143-55 [PMID: 24411639]
  31. Eur J Cancer. 2023 Oct;192:113245 [PMID: 37598656]
  32. Am J Pathol. 2002 May;160(5):1567-72 [PMID: 12000708]
  33. PLoS One. 2021 Feb 25;16(2):e0246958 [PMID: 33630918]
  34. J Clin Oncol. 2017 May 20;35(15):1713-1720 [PMID: 28362562]
  35. N Engl J Med. 2002 Aug 15;347(7):472-80 [PMID: 12181401]
  36. Oncologist. 2019 Oct;24(10):1309-e983 [PMID: 31213500]

Grants

  1. I01 BX005358/BLRD VA
  2. R21 CA263400/NCI NIH HHS

MeSH Term

Humans
Adenosine Triphosphate
Antineoplastic Agents
Drug Resistance, Neoplasm
Gastrointestinal Neoplasms
Gastrointestinal Stromal Tumors
Imatinib Mesylate
Mutation
Naphthyridines
Protein Kinase Inhibitors
Proto-Oncogene Proteins c-kit
Urea

Chemicals

Adenosine Triphosphate
Antineoplastic Agents
Imatinib Mesylate
Naphthyridines
Protein Kinase Inhibitors
Proto-Oncogene Proteins c-kit
ripretinib
Urea

Word Cloud

Created with Highcharts 10.0.0mutationssecondaryKITripretinibAP/ALresistanceALGISTsgenotypesGISTGItumorstreatmentinhibitorsclinicallimitedbenefitRipretinibHoweverlineremainsmechanismspatientscellprogressingAPresistantlinesclonessuppressPURPOSE:ImatinibstromalprimarilycausedclonalheterogeneityrepresentsmajorobstacleusedimatinibactivityalbeitpotentinhibitoractivationloopfourthmolecularlargelyunknownPATIENTSANDMETHODS:Progressinglesions25refractorysequencedResistantvalidatedcharacterizedusingnovelmodelssilicomodelingRESULTS:enrichedATP-bindingpocketfrequentlyoccurcispreexistingresultinghighlyrarelyobservedcohortsamplespreripretiniberarepresented50%harboringsolegenomicescapedrugselectionsunitinibsynergizemixedmutantsCONCLUSION:findingsunderscorecentraloncogenicdriverevenlatetherapyKIT-inhibitorcombinationsmayemergencecallsnewstrategiesdevelopmentnext-generationATP-BindingPocket/ActivationLoopMutationsStromalTumor:EmergingMechanismsKinaseInhibitorEscape

Similar Articles

Cited By