Applications of Mass Spectrometry in the Characterization, Screening, Diagnosis, and Prognosis of COVID-19.
Camila Akemi Oliveira Yamada, Bruno de Paula Oliveira Santos, Rafael Pereira Lemos, Ana Carolina Silva Batista, Izabela Mamede C A da Conceição, Adriano de Paula Sabino, Luís Maurício Trambaioli da Rocha E Lima, Mariana T Q de Magalhães
Author Information
Camila Akemi Oliveira Yamada: Laboratory for Macromolecular Biophysics - LBM, Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil. ORCID
Bruno de Paula Oliveira Santos: Laboratory for Macromolecular Biophysics - LBM, Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil. ORCID
Rafael Pereira Lemos: Laboratory for Macromolecular Biophysics - LBM, Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil. ORCID
Ana Carolina Silva Batista: Laboratory for Macromolecular Biophysics - LBM, Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil. ORCID
Izabela Mamede C A da Conceição: Biochemistry and Immunology Postgraduate Program, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil. ORCID
Adriano de Paula Sabino: Interunit Postgraduate Program in Bioinformatics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil. ORCID
Luís Maurício Trambaioli da Rocha E Lima: Laboratory for Pharmaceutical Biotechnology - pbiotech, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil. Mauricio@pharma.ufrj.br. ORCID
Mariana T Q de Magalhães: Laboratory for Macromolecular Biophysics - LBM, Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil. MQuezado@icb.ufmg.br. ORCID
Mass spectrometry (MS) is a powerful analytical technique that plays a central role in modern protein analysis and the study of proteostasis. In the field of advanced molecular technologies, MS-based proteomics has become a cornerstone that is making a significant impact in the post-genomic era and as precision medicine moves from the research laboratory to clinical practice. The global dissemination of COVID-19 has spurred collective efforts to develop effective diagnostics, vaccines, and therapeutic interventions. This chapter highlights how MS seamlessly integrates with established methods such as RT-PCR and ELISA to improve viral identification and disease progression assessment. In particular, matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) takes the center stage, unraveling intricate details of SARS-CoV-2 proteins, revealing modifications such as glycosylation, and providing insights critical to formulating therapies and assessing prognosis. However, high-throughput analysis of MALDI data presents challenges in manual interpretation, which has driven the development of programmatic pipelines and specialized packages such as MALDIquant. As we move forward, it becomes clear that integrating proteomic data with various omic findings is an effective strategy to gain a comprehensive understanding of the intricate biology of COVID-19 and ultimately develop targeted therapeutic paradigms.
WHO Coronavirus (COVID-19) Dashboard [Internet]. [cited 2023 Jul 31]. Available from: https://covid19.who.int
Mohamadian M, Chiti H, Shoghli A, Biglari S, Parsamanesh N, Esmaeilzadeh A (2021) COVID-19: virology, biology and novel laboratory diagnosis. J Gene Med 23(2):e3303
[PMID: 33305456]
Chan JFW, Kok KH, Zhu Z, Chu H, To KKW, Yuan S et al (2020) Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect 9(1):221–236
[PMID: 31987001]
Lu R, Zhao X, Li J, Niu P, Yang B, Wu H et al (2020) Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395(10224):565–574
[PMID: 32007145]
Huang Y, Yang C, Xu X, feng, Xu W, Liu S wen. (2020) Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol Sin 41(9):1141–1149
[PMID: 32747721]
Watanabe Y, Allen JD, Wrapp D, McLellan JS, Crispin M (2020) Site-specific glycan analysis of the SARS-CoV-2 spike. Science 369(6501):330–333
[PMID: 32366695]
Rosen O, Jayson A, Dor E, Epstein E, Makovitzki A, Cherry L et al (2022) SARS-CoV-2 spike antigen quantification by targeted mass spectrometry of a virus-based vaccine. J Virol Methods 303:114498
[PMID: 35217103]
Duan L, Zheng Q, Zhang H, Niu Y, Lou Y, Wang H (2020) The SARS-CoV-2 spike glycoprotein biosynthesis, structure, function, and antigenicity: implications for the design of spike-based vaccine immunogens. Front Immunol 11:576622
[PMID: 33117378]
Ye Q, Lu S, Corbett KD (2021) Structural basis for SARS-CoV-2 nucleocapsid protein recognition by single-domain antibodies. Front Immunol 12:719037
[PMID: 34381460]
Zeng W, Liu G, Ma H, Zhao D, Yang Y, Liu M et al (2020) Biochemical characterization of SARS-CoV-2 nucleocapsid protein. Biochem Biophys Res Commun 527(3):618–623
[PMID: 32416961]
Zhu G, Zhu C, Zhu Y, Sun F (2020) Minireview of progress in the structural study of SARS-CoV-2 proteins. Curr Res Microb Sci 1:53–61
[PMID: 33236001]
Nieva JL, Madan V, Carrasco L (2012) Viroporins: structure and biological functions. Nat Rev Microbiol 10(8):563–574
[PMID: 22751485]
Zhang Z, Nomura N, Muramoto Y, Ekimoto T, Uemura T, Liu K et al (2022) Structure of SARS-CoV-2 membrane protein essential for virus assembly. Nat Commun 13:4399. [cited 2023 Feb 27] Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9355944/
[PMID: 35931673]
Bai C, Zhong Q, Gao GF (2022) Overview of SARS-CoV-2 genome-encoded proteins. Sci China Life Sci 65(2):280–294
[PMID: 34387838]
Yan L, Yi J, Huang C, Zhang J, Fu S, Li Z et al (2021) Rapid detection of COVID-19 using MALDI-TOF-based serum Peptidome profiling. Anal Chem 93:acs.analchem.0c04590
de Queiroz NMGP, Marinho FV, Chagas MA, Leite LCC, Homan EJ, de Magalhães MTQ et al (2020) Vaccines for COVID-19: perspectives from nucleic acid vaccines to BCG as delivery vector system. Microbes Infect 22(10):515–524
[PMID: 32961274]
Fernandes RS, de Oliveira SJ, Gomes KB, Azevedo RB, Townsend DM, de Paula SA et al (2022) Recent advances in point of care testing for COVID-19 detection. Biomed Pharmacother 153:113538
[PMID: 36076617]
Lu LL, Suscovich TJ, Fortune SM, Alter G (2018) Beyond binding: antibody effector functions in infectious diseases. Nat Rev Immunol 18(1):46–61
[PMID: 29063907]
Lagunas-Rangel FA, Chávez-Valencia V (2021) What do we know about the antibody responses to SARS-CoV-2? Immunobiology 226(2):152054
[PMID: 33524881]
Jin Y, Yang H, Ji W, Wu W, Chen S, Zhang W et al (2020) Virology, epidemiology, pathogenesis, and control of COVID-19. Viruses 12(4):372
[PMID: 32230900]
Zhang J-J, Dong X, Cao Y-Y, Yuan Y-D, Yang Y-B, Yan Y-Q et al (2020) Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy 75(7):1730–1741
[PMID: 32077115]
Xu XW, Wu XX, Jiang XG, Xu KJ, Ying LJ, Ma CL et al (2020) Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: retrospective case series. BMJ 368:m606
[PMID: 32075786]
Marshall JC, Murthy S, Diaz J, Adhikari NK, Angus DC, Arabi YM et al (2020) A minimal common outcome measure set for COVID-19 clinical research. Lancet Infect Dis 20(8):e192–e197
Schoeman D, Fielding BC (2019) Coronavirus envelope protein: current knowledge. Virol J 16:69
[PMID: 31133031]
Hui DS, Wong P, Wang C (2003) SARS: clinical features and diagnosis. Respirol Carlton Vic 8(Suppl 1):S20–S24
Liu W, Yang C, Liao Y-G, Wan F, Lin L, Huang X et al (2022) Risk factors for COVID-19 progression and mortality in hospitalized patients without pre-existing comorbidities. J Infect Public Health 15(1):13–20
[PMID: 34861603]
Demichev V, Tober-Lau P, Lemke O, Nazarenko T, Thibeault C, Whitwell H et al (2021) A time-resolved proteomic and prognostic map of COVID-19. Cell Syst 12(8):780–794.e7
[PMID: 34139154]
Slavin M, Zamel J, Zohar K, Eliyahu T, Braitbard M, Brielle E et al (2021) Targeted in situ cross-linking mass spectrometry and integrative modeling reveal the architectures of three proteins from SARS-CoV-2. Proc Natl Acad Sci 118(34):e2103554118
[PMID: 34373319]
Jack A, Ferro LS, Trnka MJ, Wehri E, Nadgir A, Nguyenla X et al (2021) SARS-CoV-2 nucleocapsid protein forms condensates with viral genomic RNA. Cimarelli A, editor. PLOS Biol 19(10):e3001425
[PMID: 34634033]
Smith LM, Kelleher NL (2013) Proteoform: a single term describing protein complexity. Nat Methods 10(3):186–187
[PMID: 23443629]
Liko I, Allison TM, Hopper JT, Robinson CV (2016) Mass spectrometry guided structural biology. Curr Opin Struct Biol 40:136–144
[PMID: 27721169]
Krichel B, Falke S, Hilgenfeld R, Redecke L, Uetrecht C (2020) Processing of the SARS-CoV pp1a/ab nsp7–10 region. Biochem J 477(5):1009–1019
[PMID: 32083638]
Yang Y, Du Y, Kaltashov IA (2020) The utility of native MS for understanding the mechanism of action of repurposed therapeutics in COVID-19: heparin as a disruptor of the SARS-CoV-2 interaction with its host cell receptor. Anal Chem 92(16):10930–10934
[PMID: 32678978]
Grenga L, Gallais F, Pible O, Gaillard JC, Gouveia D, Batina H et al (2020) Shotgun proteomics analysis of SARS-CoV-2-infected cells and how it can optimize whole viral particle antigen production for vaccines. Emerg Microbes Infect 9(1):1712–1721
[PMID: 32619390]
Ahsan N, Rao RSP, Wilson RS, Punyamurtula U, Salvato F, Petersen M et al (2021) Mass spectrometry-based proteomic platforms for better understanding of SARS-CoV-2 induced pathogenesis and potential diagnostic approaches. Proteomics 21(10):2000279
[PMID: 33860983]
Courouble VV, Dey SK, Yadav R, Timm J, Harrison JJEK, Ruiz FX et al (2021) Resolving the dynamic motions of SARS-CoV-2 nsp7 and nsp8 proteins using structural proteomics. bioRxiv. https://doi.org/10.1101/2021.03.06.434214
Yan L, Zhang Y, Ge J, Zheng L, Gao Y, Wang T et al (2020) Architecture of a SARS-CoV-2 mini replication and transcription complex. Nat Commun 11(1):5874
[PMID: 33208736]
Banoun H (2021) Evolution of SARS-CoV-2: review of mutations, role of the host immune system. Nephron Clin Pract 145(4):392–403
Coronavirus disease (COVID-19): variants of SARS-COV-2 [Internet]. [cited 2023 Jul 31]. Available from: https://www.who.int/news-room/questions-and-answers/item/coronavirus-disease-(covid-19)-variants-of-sars-cov-2
Zhao F, Lu J, Lu B, Qin T, Wang X, Hou X et al (2021) A novel strategy for the detection of SARS-CoV-2 variants based on multiplex PCR-mass spectrometry Minisequencing technology. Wang H, editor. Microbiol Spectr 9(3):e01267–e01221
[PMID: 34787499]
Wacharapluesadee S, Hirunpatrawong P, Petcharat S, Torvorapanit P, Jitsatja A, Thippamom N et al (2023) Simultaneous detection of omicron and other SARS-CoV-2 variants by multiplex PCR MassARRAY technology. Sci Rep 13(1):2089
[PMID: 36747014]
Weisblum Y, Schmidt F, Zhang F, DaSilva J, Poston D, Lorenzi JC et al (2020) Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants. elife 9:e61312
[PMID: 33112236]
CMMID COVID-19 Working Group, Davies NG, Jarvis CI, Edmunds WJ, Jewell NP, Diaz-Ordaz K et al (2021) Increased mortality in community-tested cases of SARS-CoV-2 lineage B.1.1.7. Nature 593(7858):270–274
[>PMCID: ]
Mann C, Griffin JH, Downard KM (2021) Detection and evolution of SARS-CoV-2 coronavirus variants of concern with mass spectrometry. Anal Bioanal Chem 413(29):7241–7249
[PMID: 34532764]
Suddhapas K, Choi MH, Shortreed MR, Aaron T (2022) Evaluation of variant-specific peptides for detection of SARS-CoV-2 variants of concern. J Proteome Res 21(10):2443–2452
[PMID: 36108102]
Levi JE, Oliveira CM, Croce BD, Telles P, Lopes ACW, Romano CM et al (2021) Dynamics of SARS-CoV-2 variants of concern in Brazil, early 2021. Front Public Health 9:784300
[PMID: 35004585]
Harvey WT, Carabelli AM, Jackson B, Gupta RK, Thomson EC, Harrison EM et al (2021) SARS-CoV-2 variants, spike mutations and immune escape. Nat Rev Microbiol 19(7):409–424
[PMID: 34075212]
Monel B, Planas D, Grzelak L, Smith N, Robillard N, Staropoli I et al (2021) Release of infectious virus and cytokines in nasopharyngeal swabs from individuals infected with non-alpha or alpha SARS-CoV-2 variants: an observational retrospective study. EBioMedicine 73:103637
[PMID: 34678613]
Planas D, Veyer D, Baidaliuk A, Staropoli I, Guivel-Benhassine F, Rajah MM et al (2021) Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature 596(7871):276–280
[PMID: 34237773]
Kumar N, Quadri S, AlAwadhi AI, AlQahtani M (2022) COVID-19 recovery patterns across alpha (B.1.1.7) and Delta (B.1.617.2) variants of SARS-CoV-2. Front Immunol 13:812606
[PMID: 35237265]
Meo SA, Meo AS, Al-Jassir FF, Klonoff DC (2021) Omicron SARS-CoV-2 new variant: global prevalence and biological and clinical characteristics. Eur Rev Med Pharmacol Sci 25(24):8012–8018
[PMID: 34982465]
Araf Y, Akter F, Tang Y, Fatemi R, Parvez MSA, Zheng C et al (2022) Omicron variant of SARS-CoV-2: genomics, transmissibility, and responses to current COVID-19 vaccines. J Med Virol 94(5):1825–1832
[PMID: 35023191]
Ren SY, Wang WB, Gao RD, Zhou AM (2022) Omicron variant (B.1.1.529) of SARS-CoV-2: mutation, infectivity, transmission, and vaccine resistance. World J Clin Cases 10(1):1–11
[PMID: 35071500]
Zhang X, Wu S, Wu B, Yang Q, Chen A, Li Y, et al. SARS-CoV-2 Omicron strain exhibits potent capabilities for immune evasion and viral entrance. Signal Transduct Target Ther. 2021 6(1):430
Chen D, Bryden WA, Fenselau C, McLoughlin M, Haddaway CR, Devin AP et al (2022) MALDI-TOF mass spectrometric detection of SARS-CoV-2 using cellulose sulfate Ester enrichment and hot acid treatment. J Proteome Res 21:acs.jproteome.2c00238
Kumar R, Mehta D, Mishra N, Nayak D, Sunil S (2020) Role of host-mediated post-translational modifications (PTMs) in RNA virus pathogenesis. Int J Mol Sci 22(1):323
[PMID: 33396899]
Santos AL, Lindner AB (2017) Protein posttranslational modifications: roles in aging and age-related disease. Oxidative Med Cell Longev 2017:5716409
Adams C, Boonen K, Laukens K, Bittremieux W (2022) Open modification searching of SARS-CoV-2–human protein interaction data reveals novel viral modification sites. Mol Cell Proteomics 21(12):100425
[PMID: 36241021]
Shajahan A, Supekar NT, Gleinich AS, Azadi P (2020) Deducing the N- and O-glycosylation profile of the spike protein of novel coronavirus SARS-CoV-2. Glycobiology 30(12):981–988
[PMID: 32363391]
Pickering C, Zhou B, Xu G, Rice R, Ramachandran P, Huang H et al (2022) Differential peripheral blood glycoprotein profiles in symptomatic and asymptomatic COVID-19. Viruses 14(3):553
[PMID: 35336960]
Pan K, Chiu Y, Huang E, Chen M, Wang J, Lai I et al (2021) Mass spectrometric identification of immunogenic SARS-CoV-2 epitopes and cognate TCRs. Proc Natl Acad Sci 118(46) [cited 2022 Jan 19]. Available from: https://www.pnas.org/content/118/46/e2111815118
Poran A, Harjanto D, Malloy M, Arieta CM, Rothenberg DA, Lenkala D et al (2020) Sequence-based prediction of SARS-CoV-2 vaccine targets using a mass spectrometry-based bioinformatics predictor identifies immunogenic T cell epitopes. Genome Med 12:70
[PMID: 32791978]
Parker R, Partridge T, Wormald C, Kawahara R, Stalls V, Aggelakopoulou M et al (2021) Mapping the SARS-CoV-2 spike glycoprotein-derived peptidome presented by HLA class II on dendritic cells. Cell Rep 35(8):109179
[PMID: 34004174]
Knierman MD, Lannan MB, Spindler LJ, McMillian CL, Konrad RJ, Siegel RW (2020) The human leukocyte antigen class II Immunopeptidome of the SARS-CoV-2 spike glycoprotein. Cell Rep 33(9):108454
[PMID: 33220791]
Hunt DF, Michel H, Dickinson TA, Shabanowitz J, Cox AL, Sakaguchi K et al (1992) Peptides presented to the immune system by the murine class II major histocompatibility complex molecule I-ad. Science 256(5065):1817–1820
[PMID: 1319610]
Hunt DF, Henderson RA, Shabanowitz J, Sakaguchi K, Michel H, Sevilir N et al (1992) Characterization of peptides bound to the class I MHC molecule HLA-A2.1 by mass spectrometry. Science 255(5049):1261–1263
[PMID: 1546328]
He B, Huang Z, Huang C, Nice EC (2022) Clinical applications of plasma proteomics and peptidomics: towards precision medicine. Proteomics – Clin Appl 16(6):2100097
Dallas DC, Guerrero A, Parker EA, Robinson RC, Gan J, German JB et al (2015) Current peptidomics: applications, purification, identification, quantification, and functional analysis. Proteomics 15:1026–1038
[PMID: 25429922]
Schulte I, Tammen H, Selle H, Schulz-Knappe P (2005) Peptides in body fluids and tissues as markers of disease. Expert Rev Mol Diagn 5(2):145–157
[PMID: 15833045]
Foreman RE, George AL, Reimann F, Gribble FM, Kay RG (2021) Peptidomics: a review of clinical applications and methodologies. J Proteome Res 20(8):3782–3797
[PMID: 34270237]
Šebela M (2022) Biomolecular profiling by MALDI-TOF mass spectrometry in food and beverage analyses. Int J Mol Sci 23(21):13631
[PMID: 36362416]
Schulz-Knappe P, Hans-Dieter Z, Heine G, Jurgens M, Schrader M (2012) Peptidomics the comprehensive analysis of peptides in complex biological mixtures. Comb Chem High Throughput Screen 4(2):207–217
Captur G, Moon JC, Topriceanu CC, Joy G, Swadling L, Hallqvist J et al (2022) Plasma proteomic signature predicts who will get persistent symptoms following SARS-CoV-2 infection. EBioMedicine 85:104293
[PMID: 36182629]
Meyer B, Chiaravalli J, Gellenoncourt S, Brownridge P, Bryne DP, Daly LA et al (2021) Characterising proteolysis during SARS-CoV-2 infection identifies viral cleavage sites and cellular targets with therapeutic potential. Nat Commun 12:5553
[PMID: 34548480]
Vedula P, Tang HY, Speicher DW, Kashina A (2022) Protein posttranslational signatures identified in COVID-19 patient plasma. Front Cell Dev Biol 10:807149
[PMID: 35223838]
Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y et al (2020) Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet Lond Engl 395(10223):507–513
Chu DKW, Pan Y, Cheng SMS, Hui KPY, Krishnan P, Liu Y et al (2020) Molecular diagnosis of a novel coronavirus (2019-nCoV) causing an outbreak of pneumonia. Clin Chem 66(4):549–555
[PMID: 32031583]
Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DK et al (2020) Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eur Secur 25(3):2000045
National Center for Immunization and Respiratory Diseases D of VD. 2019-novel coronavirus (2019-nCoV) real-time rRT-PCR panel primers and probes [Internet]. 2020 [cited 2023 Jul 31]. Available from: https://stacks.cdc.gov/view/cdc/84525
Kumari P, Singh A, Ngasainao MR, Shakeel I, Kumar S, Lal S et al (2020) Potential diagnostics and therapeutic approaches in COVID-19. Clin Chim Acta Int J Clin Chem 510:488–497
Lee CYP, Lin RTP, Renia L, Ng LFP (2020) Serological approaches for COVID-19: epidemiologic perspective on surveillance and control. Front Immunol 11:879
[PMID: 32391022]
Bahreini F, Najafi R, Amini R, Khazaei S, Bashirian S (2020) Reducing false negative PCR test for COVID-19. Int J Matern Child Health AIDS IJMA 9(3):408–410
Clarke W, Sokoll LJ, Rai AJ (2020) Immunoassays. In: Contemporary practice in clinical chemistry [internet]. Elsevier, pp 201–214. [cited 2023 Feb 16] Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128154991000120
Darwish IA (2006) Immunoassay methods and their applications in pharmaceutical analysis: basic methodology and recent advances. Int J Biomed Sci IJBS 2(3):217–235
[PMID: 23674985]
Okba NMA, Müller MA, Li W, Wang C, GeurtsvanKessel CH, Corman VM et al (2020) Severe acute respiratory syndrome coronavirus 2−specific antibody responses in coronavirus disease patients. Emerg Infect Dis 26(7):1478–1488
[PMID: 32267220]
Nachtigall FM, Pereira A, Trofymchuk OS, Santos LS (2020) Detection of SARS-CoV-2 in nasal swabs using MALDI-MS. Nat Biotechnol 38(10):1168–1173
[PMID: 32733106]
Rocca MF, Zintgraff JC, Dattero ME, Santos LS, Ledesma M, Vay C et al (2020) A combined approach of MALDI-TOF mass spectrometry and multivariate analysis as a potential tool for the detection of SARS-CoV-2 virus in nasopharyngeal swabs. J Virol Methods 286:113991
[PMID: 33045283]
Iles RK, Zmuidinaite R, Iles JK, Carnell G, Sampson A, Heeney JL (2020) Development of a clinical MALDI-ToF mass spectrometry assay for SARS-CoV-2: rational design and multi-disciplinary team work. Diagnostics 10(10):746
[PMID: 32987950]
Ihling C, Tänzler D, Hagemann S, Kehlen A, Hüttelmaier S, Arlt C et al (2020) Mass spectrometric identification of SARS-CoV-2 proteins from gargle solution samples of COVID-19 patients. J Proteome Res. https://doi.org/10.1021/acs.jproteome.0c00280
Dollman NL, Griffin JH, Downard KM (2020) Detection, mapping, and proteotyping of SARS-CoV-2 coronavirus with high resolution mass spectrometry. ACS Infect Dis 6:acsinfecdis.0c00664
Chivte P, LaCasse Z, Seethi VDR, Bharti P, Bland J, Kadkol SS et al (2021) MALDI-ToF protein profiling as a potential rapid diagnostic platform for COVID-19. J Mass Spectrom Adv Clin Lab 21:31–41
[PMID: 34518823]
Gouveia D, Grenga L, Gaillard J, Gallais F, Bellanger L, Pible O et al (2020) Shortlisting SARS-CoV-2 peptides for targeted studies from experimental data-dependent acquisition tandem mass spectrometry data. Proteomics 20(14):2000107
[PMID: 32462744]
Zhang L, Liu Y (2020) Potential interventions for novel coronavirus in China: a systematic review. J Med Virol 92(5):479–490
[PMID: 32052466]
Burke M, Pal P, Zhang P, Zhang X, Zheng G (2021) Concise synthesis of ( S )-δ-CEHC, a metabolite of vitamin E. ACS Omega 6(6):4355–4361
[PMID: 33623846]
Aggarwal R, Ringold S, Khanna D, Neogi T, Johnson SR, Miller A et al (2015) Distinctions between diagnostic and classification criteria? Arthritis Care Res 67(7):891–897
Rizzi DA (1993) Medical prognosis? Some fundamentals. Theor Med 14(4):365–375
[PMID: 8184377]
Naszai M, Kurjan A, Maughan TS (2021) The prognostic utility of pre-treatment neutrophil-to-lymphocyte-ratio (NLR) in colorectal cancer: a systematic review and meta-analysis. Cancer Med 10(17):5983–5997
[PMID: 34308567]
Lazari LC, Ghilardi FDR, Rosa-Fernandes L, Assis DM, Nicolau JC, Santiago VF et al (2021) Prognostic accuracy of MALDI-TOF mass spectrometric analysis of plasma in COVID-19. Life Sci Alliance 4(8):e202000946
[PMID: 34168074]
Lazari LC, Zerbinati RM, Rosa-Fernandes L, Santiago VF, Rosa KF, Angeli CB et al (2022) MALDI-TOF mass spectrometry of saliva samples as a prognostic tool for COVID-19. J Oral Microbiol 14(1):2043651
[PMID: 35251522]
Iles RK, Iles JK, Lacey J, Gardiner A, Zmuidinaite R (2022) Direct detection of glycated human serum albumin and Hyperglycosylated IgG3 in serum, by MALDI-ToF mass spectrometry, as a predictor of COVID-19 severity. Diagnostics 12(10):2521
[PMID: 36292212]
Jorge S, Pereira K, López-Fernández H, LaFramboise W, Dhir R, Fernández-Lodeiro J et al (2020) Ultrasonic-assisted extraction and digestion of proteins from solid biopsies followed by peptide sequential extraction hyphenated to MALDI-based profiling holds the promise of distinguishing renal oncocytoma from chromophobe renal cell carcinoma. Talanta 206:120180
[PMID: 31514886]
Tucholska M, Scozzaro S, Williams D, Ackloo S, Lock C, Siu KWM et al (2007) Endogenous peptides from biophysical and biochemical fractionation of serum analyzed by matrix-assisted laser desorption/ionization and electrospray ionization hybrid quadrupole time-of-flight. Anal Biochem 370(2):228–245
[PMID: 17884004]
Kay R, Barton C, Ratcliffe L, Matharoo-Ball B, Brown P, Roberts J et al (2008) Enrichment of low molecular weight serum proteins using acetonitrile precipitation for mass spectrometry based proteomic analysis: enrichment of low molecular weight serum proteins. Rapid Commun Mass Spectrom 22(20):3255–3260
[PMID: 18803344]
Dufresne J, Bowden P, Thavarajah T, Florentinus-Mefailoski A, Chen ZZ, Tucholska M et al (2018) The plasma peptidome. Clin Proteomics 15(1):39
[PMID: 30519149]
Dufresne J, Florentinus-Mefailoski A, Bowden P, Marshall JG (2018) A method for the extraction of the endogenous tryptic peptides (peptidome) from human EDTA plasma. Anal Biochem 549:188–196
[PMID: 29486203]
Thavarajah T, dos Santos CC, Slutsky AS, Marshall JC, Bowden P, Romaschin A et al (2020) The plasma peptides of sepsis. Clin Proteomics 17:26
[PMID: 32636717]
Tirumalai RS, Chan KC, Prieto DA, Issaq HJ, Conrads TP, Veenstra TD (2003) Characterization of the low molecular weight human serum proteome. Mol Cell Proteomics 2(10):1096–1103
[PMID: 12917320]
Klupczynska A, Dereziński P, Krysztofiak J, Kokot ZJ (2016) Estimation of drug abuse in 9 polish cities by wastewater analysis. Forensic Sci Int 260:14–21
[PMID: 26779963]
Adusumilli R, Mallick P (2017) Data conversion with ProteoWizard msConvert. In: Comai L, Katz JE, Mallick P (eds) Proteomics [Internet], Methods in molecular biology; vol. 1550. Springer, New York, pp 339–368. [cited 2023 Feb 27] Available from: http://link.springer.com/10.1007/978-1-4939-6747-6_23
López-Fernández H, Santos HM, Capelo JL, Fdez-Riverola F, Glez-Peña D, Reboiro-Jato M (2015) Mass-up: an all-in-one open software application for MALDI-TOF mass spectrometry knowledge discovery. BMC Bioinf 16:318
Gibb S, Strimmer K (2012) MALDIquant: a versatile R package for the analysis of mass spectrometry data. Bioinformatics 28(17):2270–2271
[PMID: 22796955]
Romano P, Profumo A, Rocco M, Mangerini R, Ferri F, Facchiano A (2016) Geena 2, improved automated analysis of MALDI/TOF mass spectra. BMC Bioinf 17(Suppl 4):61
Romano P, Profumo A, Facchiano A (2018) Pre-processing MALDI/TOF mass spectra by using Geena 2. Curr Protoc Bioinforma 64(1):e59
Del Prete E, Facchiano A, Profumo A, Angelini C, Romano P (2021) GeenaR: a web tool for reproducible MALDI-TOF analysis. Front Genet 12:635814
[PMID: 33854526]
Ryan CG, Clayton E, Griffin WL, Sie SH, Cousens DR (1988) SNIP, a statistics-sensitive background treatment for the quantitative analysis of PIXE spectra in geoscience applications. Nucl Instrum Methods Phys Res Sect B 34(3):396–402
Bromba MUA, Horst Z (1981) Application hints for Savitzky-Golay digital smoothing filters. Anal Chem 53(11):1583–1586
Wang B, Fang A, Heim J, Bogdanov B, Pugh S, Libardoni M et al (2010) DISCO: distance and Spectrum correlation optimization alignment for two-dimensional gas chromatography time-of-flight mass spectrometry-based metabolomics. Anal Chem 82(12):5069–5081
[PMID: 20476746]
He QP, Wang J, Mobley JA, Richman J, Grizzle WE (2011) Self-calibrated warping for mass spectra alignment. Cancer Inf 10:CIN.S6358