Kidney Disease and Proteomics: A Recent Overview of a Useful Tool for Improving Early Diagnosis.

Nicolly Emanuelle de Souza Barcelos, Maria Laura Limeres, Ana Flavia Peixoto-Dias, Maria Aparecida Ribeiro Vieira, Diogo B Peruchetti
Author Information
  1. Nicolly Emanuelle de Souza Barcelos: Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.
  2. Maria Laura Limeres: Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.
  3. Ana Flavia Peixoto-Dias: Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.
  4. Maria Aparecida Ribeiro Vieira: Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.
  5. Diogo B Peruchetti: Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil. dperuchetti@ufmg.br.

Abstract

Kidney disease is a critical and potentially life-threatening degenerative condition that poses a significant global public health challenge due to its elevated rates of morbidity and mortality. It manifests primarily in two distinct clinical forms: acute kidney injury (AKI) and chronic kidney disease (CKD). The development of these conditions hinges on a multitude of factors, including the etiological agents and the presence of coexisting medical conditions. Despite disparities in their underlying pathogenic mechanisms, both AKI and CKD can progress to end-stage kidney disease (ESKD). This advanced stage is characterized by organ failure and its associated complications, greatly increasing the risk of mortality. There is an urgent need to delve into the pathogenic mechanisms underlying these diseases and to identify novel biomarkers that can facilitate earlier diagnosis. Such early detection is crucial for enhancing the efficacy of therapy and impeding disease progression. In this context, proteomic approaches have emerged as invaluable tools for uncovering potential new markers of different pathological conditions, including kidney diseases. In this chapter, we overview the recent discoveries achieved through diverse proteomic techniques aimed at identifying novel molecules that may play a pivotal role in kidney diseases such as diabetic kidney disease (DKD), IgA nephropathy (IgAN), CKD of unknown origin (CKDu), autosomal dominant polycystic kidney disease (ADPKD), lupus nephritis (LN), hypertensive nephropathy (HN), and COVID-19-associated acute kidney injury (COVID-AKI).

Keywords

References

  1. Kellum JA, Ronco C, Bellomo R (2021) Conceptual advances and evolving terminology in acute kidney disease. Nat Rev Nephrol 17:493–502 [PMID: 33712812]
  2. GBD Chronic Kidney Disease Collaboration (2020) Global, regional, and national burden of chronic kidney disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 395:709–733
  3. Venkatachalam MA, Weinberg JM, Kriz W, Bidani AK (2015) Failed tubule recovery, AKI-CKD transition, and kidney disease progression. J Am Soc Nephrol 26:1765–1776 [PMID: 25810494]
  4. Chawla LS, Eggers PW, Star RA, Kimmel PL (2014) Acute kidney injury and chronic kidney disease as interconnected syndromes. N Engl J Med 371:58–66 [PMID: 24988558]
  5. Haase M, Kellum JA, Ronco C (2012) Subclinical AKI–an emerging syndrome with important consequences. Nat Rev Nephrol 8:735–739 [PMID: 23007617]
  6. Silva-Aguiar RP, Teixeira DE, Peres RAS, Peruchetti DB, Gomes CP, Schmaier AH, Rocco PRM, Pinheiro AAS, Caruso-Neves C (2022) Subclinical acute kidney injury in COVID-19: possible mechanisms and future perspectives. Int J Mol Sci 23:14193 [PMID: 36430671]
  7. Fang F, Hu X, Dai X, Wang S, Bai Z, Chen J, Pan J, Li X, Wang J, Li Y (2018) Subclinical acute kidney injury is associated with adverse outcomes in critically ill neonates and children. Crit Care 22:256 [PMID: 30305134]
  8. Giannese D, D’Alessandro C, Panichi V, Pellegrino N, Cupisti A (2023) Nutritional treatment as a synergic intervention to pharmacological therapy in CKD patients. Nutrients 15:2715 [PMID: 37375619]
  9. Dominguez DC, Lopes R, Torres ML (2007) Proteomics: clinical applications. Clin Lab Sci 20:245–248 [PMID: 18069451]
  10. Petricoin EF, Liotta LA (2003) Clinical applications of proteomics. J Nutr 133:2476S–2484S [PMID: 12840227]
  11. Staessen JA, Wendt R, Yu Y-L et al (2022) Predictive performance and clinical application of COV50, a urinary proteomic biomarker in early COVID-19 infection: a prospective multicentre cohort study. Lancet Digit Health 4:e727–e737 [PMID: 36057526]
  12. Cummins TD, Korte EA, Bhayana S, Merchant ML, Barati MT, Smoyer WE, Klein JB (2022) Advances in proteomic profiling of pediatric kidney diseases. Pediatr Nephrol 37:2255–2265 [PMID: 35220505]
  13. Gilbert RE (2017) Proximal Tubulopathy: prime mover and key therapeutic target in diabetic kidney disease. Diabetes 66:791–800 [PMID: 28325740]
  14. Alicic RZ, Rooney MT, Tuttle KR (2017) Diabetic kidney disease: challenges, Progress, and possibilities. Clin J Am Soc Nephrol 12:2032–2045 [PMID: 28522654]
  15. Farias RS, Silva-Aguiar RP, Teixeira DE, Gomes CP, Pinheiro AAS, Peruchetti DB, Caruso-Neves C (2023) Inhibition of SGLT2 co-transporter by dapagliflozin ameliorates tubular proteinuria and tubule-interstitial injury at the early stage of diabetic kidney disease. Eur J Pharmacol 942:175521 [PMID: 36681317]
  16. de Peruchetti DB, Silva-Aguiar RP, Siqueira GM, Dias WB, Caruso-Neves C (2018) High glucose reduces megalin-mediated albumin endocytosis in renal proximal tubule cells through protein kinase B O-GlcNAcylation. J Biol Chem 293:11388–11400 [PMID: 29871929]
  17. Darmayanti S, Lesmana R, Meiliana A, Abdulah R (2021) Genomics, proteomics and metabolomics approaches for predicting diabetic nephropathy in type 2 diabetes mellitus patients. Curr Diabetes Rev 17:e123120189796 [PMID: 33393899]
  18. Folli F, Guzzi V, Perego L et al (2010) Proteomics reveals novel oxidative and glycolytic mechanisms in type 1 diabetic patients’ skin which are normalized by kidney-pancreas transplantation. PLoS One 5:e9923 [PMID: 20360867]
  19. Smith A, Iablokov V, Mazza M et al (2020) Detecting proteomic indicators to distinguish diabetic nephropathy from hypertensive Nephrosclerosis by integrating matrix-assisted laser desorption/ionization mass spectrometry imaging with high-mass accuracy mass spectrometry. Kidney Blood Press Res 45:233–248 [PMID: 32062660]
  20. Kim H-J, Cho E-H, Yoo J-H, Kim P-K, Shin J-S, Kim M-R, Kim C-W (2007) Proteome analysis of serum from type 2 diabetics with nephropathy. J Proteome Res 6:735–743 [PMID: 17269729]
  21. Bringans SD, Ito J, Stoll T, Winfield K, Phillips M, Peters K, Davis WA, Davis TME, Lipscombe RJ (2017) Comprehensive mass spectrometry based biomarker discovery and validation platform as applied to diabetic kidney disease. EuPA Open Proteom 14:1–10 [PMID: 29900119]
  22. Rossing K, Mischak H, Dakna M et al (2008) Urinary proteomics in diabetes and CKD. J Am Soc Nephrol 19:1283–1290 [PMID: 18448586]
  23. Merchant ML, Perkins BA, Boratyn GM et al (2009) Urinary peptidome may predict renal function decline in type 1 diabetes and microalbuminuria. J Am Soc Nephrol 20:2065–2074 [PMID: 19643930]
  24. Zürbig P, Jerums G, Hovind P, Macisaac RJ, Mischak H, Nielsen SE, Panagiotopoulos S, Persson F, Rossing P (2012) Urinary proteomics for early diagnosis in diabetic nephropathy. Diabetes 61:3304–3313 [PMID: 22872235]
  25. Siwy J, Schanstra JP, Argiles A et al (2014) Multicentre prospective validation of a urinary peptidome-based classifier for the diagnosis of type 2 diabetic nephropathy. Nephrol Dial Transplant 29:1563–1570 [PMID: 24589724]
  26. Bellei E, Monari E, Bergamini S, Pini LA, Aldo T, Ozben T (2018) Urinary proteomics in biomarker discovery of kidney-related disorders: diabetic nephropathy and drug-induced nephrotoxicity in chronic headache. EJIFCC 29:290–297 [PMID: 30574040]
  27. Ahn H-S, Kim JH, Jeong H, Yu J, Yeom J, Song SH, Kim SS, Kim IJ, Kim K (2020) Differential urinary proteome analysis for predicting prognosis in type 2 diabetes patients with and without renal dysfunction. Int J Mol Sci 21:4236 [PMID: 32545899]
  28. Glazyrin YE, Veprintsev DV, Ler IA et al (2020) Proteomics-based machine learning approach as an alternative to conventional biomarkers for differential diagnosis of chronic kidney diseases. Int J Mol Sci 21:4802 [PMID: 32645927]
  29. Petrou D, Kalogeropoulos P, Liapis G, Lionaki S (2023) IgA nephropathy: current treatment and new insights. Antibodies (Basel) 12:40 [PMID: 37366657]
  30. Wyatt RJ, Julian BA, Baehler RW, Stafford CC, McMorrow RG, Ferguson T, Jackson E, Woodford SY, Miller PM, Kritchevsky S (1998) Epidemiology of IgA nephropathy in central and eastern Kentucky for the period 1975 through 1994. Central Kentucky Region of the Southeastern United States IgA Nephropathy DATABANK Project. J Am Soc Nephrol 9:853–858 [PMID: 9596083]
  31. Galla JH (1995) IgA nephropathy. Kidney Int 47:377–387 [PMID: 7723227]
  32. Yeo SC, Goh SM, Barratt J (2019) Is immunoglobulin A nephropathy different in different ethnic populations? Nephrology (Carlton) 24:885–895 [PMID: 30977248]
  33. Suzuki H, Kiryluk K, Novak J et al (2011) The pathophysiology of IgA nephropathy. J Am Soc Nephrol 22:1795–1803 [PMID: 21949093]
  34. Peters B, Beige J, Siwy J et al (2023) Dynamics of urine proteomics biomarker and disease progression in patients with IgA nephropathy. Nephrol Dial Transplant 30:gfad125
  35. Rudnicki M, Siwy J, Wendt R et al (2021) Urine proteomics for prediction of disease progression in patients with IgA nephropathy. Nephrol Dial Transplant 37:42–52 [PMID: 33313853]
  36. Xue D, Li M, Xiang D, Sun J, Zhang W, Duan J, Cheng X, Wang C (2023) Serum proteomic analysis by Nanoflow LC-MS/MS-based proteomics in IgA chronic kidney disease. Clin Lab. https://doi.org/10.7754/Clin.Lab.2022.220417
  37. Zhang D, Li Y, Liang M, Liang Y, Tian J, He Q, Yang B, Jin J, Zhu W (2022) LC-MS/MS based metabolomics and proteomics reveal candidate biomarkers and molecular mechanism of early IgA nephropathy. Clin Proteomics 19:51 [PMID: 36572849]
  38. Paunas FTI, Finne K, Leh S, Marti H-P, Berven F, Vikse BE (2022) Proteomic signature of tubulointerstitial tissue predicts prognosis in IgAN. BMC Nephrol 23:118 [PMID: 35331167]
  39. Dong J, Zheng F, Liu F et al (2023) Global-feature of autoimmune glomerulonephritis using proteomic analysis of laser capture microdissected glomeruli. Front Immunol 14:1131164 [PMID: 37033921]
  40. Pett J, Mohamed F, Knight J, Linhart C, Osborne NJ, Taylor R (2022) Two decades of chronic kidney disease of unknown aetiology (CKDu) research: existing evidence and persistent gaps from epidemiological studies in Sri Lanka. Nephrology (Carlton) 27:238–247 [PMID: 34704321]
  41. Priyadarshani WVD, de Namor AFD, Silva SRP (2023) Rising of a global silent killer: critical analysis of chronic kidney disease of uncertain aetiology (CKDu) worldwide and mitigation steps. Environ Geochem Health 45:2647–2662 [PMID: 36094692]
  42. Athuraliya NTC, Abeysekera TDJ, Amerasinghe PH, Kumarasiri R, Bandara P, Karunaratne U, Milton AH, Jones AL (2011) Uncertain etiologies of proteinuric-chronic kidney disease in rural Sri Lanka. Kidney Int 80:1212–1221 [PMID: 21832982]
  43. Kolli RT, Gunasekara SC, Foster MW, Adduri S, Strasma A, Wyatt C, Konduru NV, De Silva MCS, Jayasundara N (2023) The urinary proteome infers dysregulation of mitochondrial, lysosomal, and protein reabsorption processes in chronic kidney disease of unknown etiology (CKDu). Am J Physiol Renal Physiol 324:F387–F403 [PMID: 36794752]
  44. Menezes LF, Germino GG (2019) The pathobiology of polycystic kidney disease from a metabolic viewpoint. Nat Rev Nephrol 15:735–749 [PMID: 31488901]
  45. Pana C, Stanigut AM, Cimpineanu B, Alexandru A, Salim C, Nicoara AD, Resit P, Tuta LA (2023) Urinary biomarkers in monitoring the progression and treatment of autosomal dominant polycystic kidney disease-the promised land? Medicina (Kaunas) 59:915 [PMID: 37241147]
  46. Spithoven EM, Kramer A, Meijer E et al (2014) Analysis of data from the ERA-EDTA Registry indicates that conventional treatments for chronic kidney disease do not reduce the need for renal replacement therapy in autosomal dominant polycystic kidney disease. Kidney Int 86:1244–1252 [PMID: 24827775]
  47. Rodriguez-Osorio L, Vanessa Perez-Gomez M, Ortiz A (2015) Decreasing incidence of renal replacement therapy over time at the critical 50-59-year age range suggests a role for nephroprotective therapy in ADPKD. Kidney Int 88:194 [PMID: 26126094]
  48. Dekker SEI, Verhoeven A, Soonawala D, Peters DJM, de Fijter JW, Mayboroda OA, DIPAK Consortium (2020) Urinary metabolites associate with the rate of kidney function decline in patients with autosomal dominant polycystic kidney disease. PLoS One 15:e0233213 [PMID: 32442208]
  49. Bruschi M, Granata S, Santucci L et al (2019) Proteomic analysis of urinary microvesicles and exosomes in medullary sponge kidney disease and autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol 14:834–843 [PMID: 31018934]
  50. Staubach S, Wenzel A, Beck BB, Rinschen MM, Müller S, Hanisch F-G (2018) Autosomal Tubulointerstitial kidney disease-MUC1 type: differential proteomics suggests that mutated MUC1 (insC) affects vesicular transport in renal epithelial cells. Proteomics 18:e1700456 [PMID: 29436780]
  51. Mohan C, Zhang T, Putterman C (2023) Pathogenic cellular and molecular mediators in lupus nephritis. Nat Rev Nephrol 19:491–508 [PMID: 37225921]
  52. Hocaoǧlu M, Valenzuela-Almada MO, Dabit JY et al (2023) Incidence, prevalence, and mortality of lupus nephritis: a population-based study over four decades using the lupus Midwest network. Arthritis Rheumatol 75:567–573 [PMID: 36227575]
  53. Fava A, Buyon J, Mohan C et al (2020) Integrated urine proteomics and renal single-cell genomics identify an IFN-γ response gradient in lupus nephritis. JCI Insight 5:e138345 [PMID: 32396533]
  54. Go DJ, Lee JY, Kang MJ, Lee EY, Lee EB, Yi EC, Song YW (2018) Urinary vitamin D-binding protein, a novel biomarker for lupus nephritis, predicts the development of proteinuric flare. Lupus 27:1600–1615 [PMID: 29958502]
  55. Mejia-Vilet JM, Shapiro JP, Zhang XL et al (2021) Association between urinary epidermal growth factor and renal prognosis in lupus nephritis. Arthritis Rheumatol 73:244–254 [PMID: 32892508]
  56. Akhgar A, Sinibaldi D, Zeng L et al (2023) Urinary markers differentially associate with kidney inflammatory activity and chronicity measures in patients with lupus nephritis. Lupus Sci Med 10:e000747 [PMID: 36717181]
  57. Bicescu G (2010) Epidemiology of hypertensive kidney disease: diagnosis. Maedica (Bucur) 5:309–310 [PMID: 21977180]
  58. Udani S, Lazich I, Bakris GL (2011) Epidemiology of hypertensive kidney disease. Nat Rev Nephrol 7:11–21 [PMID: 21079654]
  59. Carriazo S, Vanessa Perez-Gomez M, Ortiz A (2020) Hypertensive nephropathy: a major roadblock hindering the advance of precision nephrology. Clin Kidney J 13:504–509 [PMID: 32897275]
  60. Lucero CM, Prieto-Villalobos J, Marambio-Ruiz L, Balmazabal J, Alvear TF, Vega M, Barra P, Retamal MA, Orellana JA, Gómez GI (2022) Hypertensive nephropathy: unveiling the possible involvement of Hemichannels and Pannexons. Int J Mol Sci 23:15936 [PMID: 36555574]
  61. Costantino VV, Gil Lorenzo AF, Bocanegra V, Vallés PG (2021) Molecular mechanisms of hypertensive nephropathy: Renoprotective effect of losartan through Hsp70. Cell 10:3146
  62. Landgraf SS, Wengert M, Silva JS, Zapata-Sudo G, Sudo RT, Takiya CM, Pinheiro AAS, Caruso-Neves C (2011) Changes in angiotensin receptors expression play a pivotal role in the renal damage observed in spontaneously hypertensive rats. Am J Physiol Renal Physiol 300:F499–F510 [PMID: 21084406]
  63. Silva-Aguiar RP, Bezerra NCF, Lucena MC, Sirtoli GM, Sudo RT, Zapata-Sudo G, Takiya CM, Pinheiro AAS, Dias WB, Caruso-Neves C (2018) O-GlcNAcylation reduces proximal tubule protein reabsorption and promotes proteinuria in spontaneously hypertensive rats. J Biol Chem 293:12749–12758 [PMID: 29954945]
  64. Øvrehus MA, Zürbig P, Vikse BE, Hallan SI (2015) Urinary proteomics in chronic kidney disease: diagnosis and risk of progression beyond albuminuria. Clin Proteomics 12:21 [PMID: 26257595]
  65. Bostanghadiri N, Ziaeefar P, Mofrad MG, Yousefzadeh P, Hashemi A, Darban-Sarokhalil D (2023) COVID-19: an overview of SARS-CoV-2 variants-the current vaccines and drug development. Biomed Res Int 2023:1879554 [PMID: 37674935]
  66. Murakami N, Hayden R, Hills T, Al-Samkari H, Casey J, Del Sorbo L, Lawler PR, Sise ME, Leaf DE (2023) Therapeutic advances in COVID-19. Nat Rev Nephrol 19:38–52 [PMID: 36253508]
  67. Schmitt CA, Tchkonia T, Niedernhofer LJ, Robbins PD, Kirkland JL, Lee S (2023) COVID-19 and cellular senescence. Nat Rev Immunol 23:251–263 [PMID: 36198912]
  68. Legrand M, Bell S, Forni L, Joannidis M, Koyner JL, Liu K, Cantaluppi V (2021) Pathophysiology of COVID-19-associated acute kidney injury. Nat Rev Nephrol 17:751–764 [PMID: 34226718]
  69. Bento GAO, Leite VLT, Campos RP, Vaz FB, Daher EDF, Duarte DB (2023) Reduction of estimated glomerular filtration rate after COVID-19-associated acute kidney injury. J Bras Nefrol:S0101-28002023005019501. https://doi.org/10.1590/2175-8239-JBN-2022-0179en
  70. Werion A, Belkhir L, Perrot M et al (2020) SARS-CoV-2 causes a specific dysfunction of the kidney proximal tubule. Kidney Int 98:1296–1307 [PMID: 32791255]
  71. Passoni R, Lordani TVA, Peres LAB, da Carvalho ARS (2022) Occurrence of acute kidney injury in adult patients hospitalized with COVID-19: a systematic review and meta-analysis. Nefrologia (Engl Ed) 42:404–414 [PMID: 36460430]
  72. He W, Liu X, Hu B et al (2022) Mechanisms of SARS-CoV-2 infection-induced kidney injury: a literature review. Front Cell Infect Microbiol 12:838213 [PMID: 35774397]
  73. Li H, Xia J, Bennett D et al (2023) Long-COVID-19 clinical and health outcomes: an umbrella review. Ther Adv Infect Dis 10:20499361231198335 [PMID: 37720384]
  74. Szabo S, Zayachkivska O, Hussain A, Muller V (2023) What is really “Long COVID”? Inflammopharmacology 31:551–557 [PMID: 36964860]
  75. Ye Y, Swensen AC, Wang Y et al (2021) A pilot study of urine proteomics in COVID-19-associated acute kidney injury. Kidney Int Rep 6:3064–3069 [PMID: 34642644]
  76. Paranjpe I, Jayaraman P, Su C-Y et al (2023) Proteomic characterization of acute kidney injury in patients hospitalized with SARS-CoV2 infection. Commun Med (Lond) 3:81 [PMID: 37308534]

MeSH Term

Humans
Proteomics
Renal Insufficiency, Chronic
Kidney Failure, Chronic
Acute Kidney Injury
Early Diagnosis
Biomarkers

Chemicals

Biomarkers

Word Cloud

Created with Highcharts 10.0.0kidneydiseaseKidneyinjuryCKDconditionsdiseasesUrinarymortalityacuteAKIincludingunderlyingpathogenicmechanismscannovelbiomarkersproteomicnephropathycriticalpotentiallylife-threateningdegenerativeconditionposessignificantglobalpublichealthchallengedueelevatedratesmorbiditymanifestsprimarilytwodistinctclinicalforms:chronicdevelopmenthingesmultitudefactorsetiologicalagentspresencecoexistingmedicalDespitedisparitiesprogressend-stageESKDadvancedstagecharacterizedorganfailureassociatedcomplicationsgreatlyincreasingriskurgentneeddelveidentifyfacilitateearlierdiagnosisearlydetectioncrucialenhancingefficacytherapyimpedingprogressioncontextapproachesemergedinvaluabletoolsuncoveringpotentialnewmarkersdifferentpathologicalchapteroverviewrecentdiscoveriesachieveddiversetechniquesaimedidentifyingmoleculesmayplaypivotalrolediabeticDKDIgAIgANunknownoriginCKDuautosomaldominantpolycysticADPKDlupusnephritisLNhypertensiveHNCOVID-19-associatedCOVID-AKIDiseaseProteomics:RecentOverviewUsefulToolImprovingEarlyDiagnosisAcuteChronicMassspectrometryProteomicspeptidesproteins

Similar Articles

Cited By