A low-frequency variant of sushi, von Willebrand factor type A, EGF, and pentraxin domain-containing protein 1 (SVEP1) is associated with the risk of coronary artery disease, as determined by a genome-wide association study. SVEP1 induces vascular smooth muscle cell proliferation and an inflammatory phenotype to promote atherosclerosis. In the present study, qRT���PCR demonstrated that the mRNA expression of SVEP1 was significantly increased in atherosclerotic plaques compared to normal tissues. Bioinformatics revealed that EGR1 was a transcription factor for SVEP1. The results of the luciferase reporter assay, siRNA interference or overexpression assay, mutational analysis and ChIP confirmed that EGR1 positively regulated the transcriptional activity of SVEP1 by directly binding to its promoter. EGR1 promoted human coronary artery smooth muscle cell (HCASMC) proliferation and migration via SVEP1 in response to oxidized low-density lipoprotein (ox-LDL) treatment. Moreover, the expression level of EGR1 was increased in atherosclerotic plaques and showed a strong linear correlation with the expression of SVEP1. Our findings indicated that EGR1 binding to the promoter region drive SVEP1 transcription to promote HCASMC proliferation and migration.
Roth GA et al (2020) Global burden of cardiovascular diseases and risk factors, 1990���2019: update from the GBD 2019 study. J Am Coll Cardiol 76(25):2982���3021
[DOI: 10.1016/j.jacc.2020.11.010]
Benjamin EJ et al (2019) Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation 139(10):e56���e528
[DOI: 10.1161/CIR.0000000000000659]
Hansson GK (2005) Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352(16):1685���1695
[DOI: 10.1056/NEJMra043430]
Libby P (2021) The changing landscape of atherosclerosis. Nature 592(7855):524���533
[DOI: 10.1038/s41586-021-03392-8]
Arnett DK et al (2019) 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines. Circulation 140(11):e596���e646
[PMID: 30879355]
Pan H et al (2020) Single-cell genomics reveals a novel cell state during smooth muscle cell phenotypic switching and potential therapeutic targets for atherosclerosis in mouse and human. Circulation 142(21):2060���2075
[DOI: 10.1161/CIRCULATIONAHA.120.048378]
Miano JM et al (2021) Fate and state of vascular smooth muscle cells in atherosclerosis. Circulation 143(21):2110���2116
[DOI: 10.1161/CIRCULATIONAHA.120.049922]
Cao G et al (2022) How vascular smooth muscle cell phenotype switching contributes to vascular disease. Cell Commun Signal 20(1):180
[DOI: 10.1186/s12964-022-00993-2]
Sato-Nishiuchi R et al (2012) Polydom/SVEP1 is a ligand for integrin ��9��1. J Biol Chem 287(30):25615���25630
[DOI: 10.1074/jbc.M112.355016]
Myocardial infarction genetics and CARDIoGRAM exome consortia investigators, Stitziel NO et al (2016) Coding variation in ANGPTL4, LPL, and SVEP1 and the risk of coronary disease. N Engl J Med 374(12):1134���1144
[DOI: 10.1056/NEJMoa1507652]
Jung IH et al (2021) SVEP1 is a human coronary artery disease locus that promotes atherosclerosis. Sci Transl Med. 13(586):eabe0357
[DOI: 10.1126/scitranslmed.abe0357]
Winkler MJ et al (2020) Functional investigation of the coronary artery disease gene SVEP1. Basic Res Cardiol 115(6):67
[DOI: 10.1007/s00395-020-00828-6]
Zhang H et al (2021) Augmenting ATG14 alleviates atherosclerosis and inhibits inflammation via promotion of autophagosome-lysosome fusion in macrophages. Autophagy 17(12):4218���4230
[DOI: 10.1080/15548627.2021.1909833]
Ayari H et al (2013) Identification of two genes potentially associated in iron-heme homeostasis in human carotid plaque using microarray analysis. J Biosci 38(2):311���315
[DOI: 10.1007/s12038-013-9310-2]
Grootaert MOJ et al (2021) Vascular smooth muscle cells in atherosclerosis: time for a reassessment. Cardiovasc Res 117(11):2326���2339
[DOI: 10.1093/cvr/cvab046]
Tang HY et al (2022) Vascular smooth muscle cells phenotypic switching in cardiovascular diseases. Cells 11(24):4060
[DOI: 10.3390/cells11244060]
Wirka RC et al (2019) Atheroprotective roles of smooth muscle cell phenotypic modulation and the TCF21 disease gene as revealed by single-cell analysis. Nat Med 25(8):1280���1289
[DOI: 10.1038/s41591-019-0512-5]
Kansakar U et al (2021) Targeting the phenotypic switch of vascular smooth muscle cells to tackle atherosclerosis. Atherosclerosis 324:117���120
[DOI: 10.1016/j.atherosclerosis.2021.03.034]
Aherrahrou R et al (2020) Genetic regulation of atherosclerosis-relevant phenotypes in human vascular smooth muscle cells. Circ Res 127(12):1552���1565
[DOI: 10.1161/CIRCRESAHA.120.317415]
Tcheandjieu C et al (2022) Large-scale genome-wide association study of coronary artery disease in genetically diverse populations. Nat Med 28(8):1679���1692
[DOI: 10.1038/s41591-022-01891-3]
Solomon CU et al (2022) Effects of coronary artery disease-associated variants on vascular smooth muscle cells. Circulation 146(12):917���929
[DOI: 10.1161/CIRCULATIONAHA.121.058389]
Finney AC et al (2017) Integrin signaling in atherosclerosis. Cell Mol Life Sci 74(12):2263���2282
[DOI: 10.1007/s00018-017-2490-4]
Chen PY et al (2016) Smooth muscle FGF/TGF�� cross talk regulates atherosclerosis progression. EMBO Mol Med 8(7):712���728
[DOI: 10.15252/emmm.201506181]
Martos-Rodriguez CJ et al (2021) Fibrous caps in atherosclerosis form by notch-dependent mechanisms common to arterial media development. Arterioscler Thromb Vasc Biol 41(9):e427���e439
[DOI: 10.1161/ATVBAHA.120.315627]
Peng X et al (2023) Role of the notch1 signaling pathway in ischemic heart disease (review). Int J Mol Med 51(3):27
[DOI: 10.3892/ijmm.2023.5230]
Khachigian LM (2021) Early growth response-1, an integrative sensor in cardiovascular and inflammatory disease. J Am Heart Assoc 10(22):e023539
[DOI: 10.1161/JAHA.121.023539]
Xie Y et al (2023) Early growth response-1: key mediators of cell death and novel targets for cardiovascular disease therapy. Front Cardiovasc Med 10:1162662
[DOI: 10.3389/fcvm.2023.1162662]
Wang B et al (2010) Phosphorylation and acetylation of histone H3 and autoregulation by early growth response 1 mediate interleukin 1beta induction of early growth response 1 transcription. Arterioscler Thromb Vasc Biol 30(3):536���545
[DOI: 10.1161/ATVBAHA.109.193821]
Fasolo F et al (2021) Long noncoding RNA MIAT controls advanced atherosclerotic lesion formation and plaque destabilization. Circulation 144(19):1567���1583
[DOI: 10.1161/CIRCULATIONAHA.120.052023]
Yan SF et al (2006) Protein kinase C beta/early growth response-1 pathway: a key player in ischemia, atherosclerosis, and restenosis. J Am Coll Cardiol 48(9):A47���55
[DOI: 10.1016/j.jacc.2006.05.063]
Andrassy M et al (2005) Centrol role of PKC beta in neointimal expansion triggered by acute arterial injury. Circ Res 96(4):476���483
[DOI: 10.1161/01.RES.0000156903.37007.d1]
Khachigian LM et al (1996) Egr-1-induced endothelial gene expression: a common theme in vascular injury. Science 271(5254):1427���1431
[DOI: 10.1126/science.271.5254.1427]
Li Y et al (2016) MicroRNA miR-191 targets the zinc finger transcription factor Egr-1 and suppresses intimal thickening after carotid injury. Int J Cardiol 212:299���302
[DOI: 10.1016/j.ijcard.2016.03.037]
Zhang J et al (2013) An Egr-1-specific DNAzyme regulates Egr-1 and proliferating cell nuclear antigen expression in rat vascular smooth muscle cells. Exp Ther Med 5(5):1371���1374
[DOI: 10.3892/etm.2013.1013]
Han W et al (2010) EGR-1 decoy ODNs inhibit vascular smooth muscle cell proliferation and neointimal hperplasia of balloon-injured arteries in rat. Life Sci 86(7���8):234���243
[DOI: 10.1016/j.lfs.2009.12.005]
Grants
82101816/National Natural Science Foundation of China
82270068/National Natural Science Foundation of China
81970579/National Natural Science Foundation of China
BK20210965/Natural Science Foundation of Jiangsu Province