Right ventricular performance during acute hypoxic exercise.

Lindsay M Forbes, Todd M Bull, Tim Lahm, Tyler Sisson, Katie O'Gean, Justin S Lawley, Kendall Hunter, Benjamin D Levine, Andrew Lovering, Robert C Roach, Andrew W Subudhi, William K Cornwell
Author Information
  1. Lindsay M Forbes: Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Aurora, CO, USA.
  2. Todd M Bull: Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Aurora, CO, USA.
  3. Tim Lahm: Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Aurora, CO, USA.
  4. Tyler Sisson: Clinical Translational Research Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
  5. Katie O'Gean: Clinical Translational Research Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
  6. Justin S Lawley: Department of Sport Science, University of Innsbruck, Innsbruck, Austria. ORCID
  7. Kendall Hunter: Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
  8. Benjamin D Levine: Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, USA. ORCID
  9. Andrew Lovering: Department of Physiology, University of Oregon, Eugene, OR, USA. ORCID
  10. Robert C Roach: Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Aurora, CO, USA.
  11. Andrew W Subudhi: Department of Physiology, University of Colorado, Colorado Springs, CO, USA.
  12. William K Cornwell: Clinical Translational Research Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.

Abstract

Acute hypoxia increases pulmonary arterial (PA) pressures, though its effect on right ventricular (RV) function is controversial. The objective of this study was to characterize exertional RV performance during acute hypoxia. Ten healthy participants (34 ± 10 years, 7 males) completed three visits: visits 1 and 2 included non-invasive normoxic (fraction of inspired oxygen ( ) = 0.21) and isobaric hypoxic (  = 0.12) cardiopulmonary exercise testing (CPET) to determine normoxic/hypoxic maximal oxygen uptake ( ). Visit 3 involved invasive haemodynamic assessments where participants were randomized 1:1 to either Swan-Ganz or conductance catheterization to quantify RV performance via pressure-volume analysis. Arterial oxygen saturation was determined by blood gas analysis from radial arterial catheterization. During visit 3, participants completed invasive submaximal CPET testing at 50% normoxic and again at 50% hypoxic (  = 0.12). Median (interquartile range) values for non-invasive values during normoxic and hypoxic testing were 2.98 (2.43, 3.66) l/min and 1.84 (1.62, 2.25) l/min, respectively (P < 0.0001). Mean PA pressure increased significantly when transitioning from rest to submaximal exercise during normoxic and hypoxic conditions (P = 0.0014). Metrics of RV contractility including preload recruitable stroke work, dP/dt, and end-systolic pressure increased significantly during the transition from rest to exercise under normoxic and hypoxic conditions. Ventricular-arterial coupling was maintained during normoxic exercise at 50% . During submaximal exercise at 50% of hypoxic , ventricular-arterial coupling declined but remained within normal limits. In conclusion, resting and exertional RV functions are preserved in response to acute exposure to hypoxia at an  = 0.12 and the associated increase in PA pressures. KEY POINTS: The healthy right ventricle augments contractility, lusitropy and energetics during periods of increased metabolic demand (e.g. exercise) in acute hypoxic conditions. During submaximal exercise, ventricular-arterial coupling decreases but remains within normal limits, ensuring that cardiac output and systemic perfusion are maintained. These data describe right ventricular physiological responses during submaximal exercise under conditions of acute hypoxia, such as occurs during exposure to high altitude and/or acute hypoxic respiratory failure.

Keywords

References

  1. J Appl Physiol (1985). 1987 Aug;63(2):521-30 [PMID: 3654410]
  2. Physiol Rep. 2017 Oct;5(19): [PMID: 29038355]
  3. High Alt Med Biol. 2010 Summer;11(2):111-9 [PMID: 20586595]
  4. Am J Respir Crit Care Med. 2023 Aug 1;208(3):312-321 [PMID: 37276608]
  5. J Appl Physiol. 1956 Nov;9(3):328-36 [PMID: 13376451]
  6. Am J Physiol Heart Circ Physiol. 2004 Mar;286(3):H856-62 [PMID: 14604853]
  7. J Physiol. 2019 Feb;597(4):1059-1072 [PMID: 29808473]
  8. J Am Heart Assoc. 2021 Oct 5;10(19):e023225 [PMID: 34496612]
  9. Acta Physiol (Oxf). 2017 Feb;219(2):478-485 [PMID: 27332955]
  10. J Am Coll Cardiol. 2017 Jan 17;69(2):236-243 [PMID: 28081831]
  11. Circulation. 2001 Apr 24;103(16):2078-83 [PMID: 11319198]
  12. High Alt Med Biol. 2012 Jun;13(2):105-11 [PMID: 22724613]
  13. Am J Respir Crit Care Med. 2015 May 1;191(9):1050-7 [PMID: 25710636]
  14. Eur Heart J. 2012 Apr;33(8):998-1006 [PMID: 22160404]
  15. Circ Heart Fail. 2018 Feb;11(2):e004121 [PMID: 29449367]
  16. Circulation. 1991 Sep;84(3):1016-23 [PMID: 1884438]
  17. Am J Physiol Heart Circ Physiol. 2003 May;284(5):H1625-30 [PMID: 12531727]
  18. Circulation. 1991 Jan;83(1):202-12 [PMID: 1898642]
  19. J Heart Lung Transplant. 2021 Feb;40(2):128-137 [PMID: 33281029]
  20. JACC Case Rep. 2022 Nov 02;4(21):1435-1438 [PMID: 36388707]
  21. Eur J Appl Physiol. 2007 Dec;102(1):87-95 [PMID: 17909844]
  22. Curr Cardiol Rev. 2009 Jan;5(1):22-8 [PMID: 20066144]
  23. Am J Physiol Lung Cell Mol Physiol. 2021 May 1;320(5):L715-L725 [PMID: 33655769]
  24. J Am Heart Assoc. 2022 Feb 15;11(4):e023839 [PMID: 35156392]
  25. Heart. 2023 Feb 14;109(5):349-355 [PMID: 35641176]
  26. Am J Physiol Heart Circ Physiol. 2004 Sep;287(3):H1023-8 [PMID: 15317673]
  27. Cardiovasc Res. 1981 Jun;15(6):328-34 [PMID: 7296590]
  28. JACC Heart Fail. 2016 Aug;4(8):625-35 [PMID: 27179828]
  29. Med Biol Eng Comput. 1999 Mar;37(2):169-74 [PMID: 10396820]
  30. Chest. 2023 Sep;164(3):736-746 [PMID: 37061028]
  31. Am J Respir Crit Care Med. 2023 Aug 1;208(3):333-336 [PMID: 37311248]
  32. J Appl Physiol (1985). 1987 Aug;63(2):531-9 [PMID: 3654411]
  33. Am J Physiol Heart Circ Physiol. 2011 Oct;301(4):H1678-86 [PMID: 21724871]
  34. Am J Physiol Heart Circ Physiol. 2009 Mar;296(3):H854-61 [PMID: 19168724]
  35. Am J Physiol Heart Circ Physiol. 2005 Oct;289(4):H1391-8 [PMID: 15923316]
  36. Exp Physiol. 2013 Aug;98(8):1247-56 [PMID: 23625956]
  37. Eur J Prev Cardiol. 2022 Dec 7;29(17):2154-2162 [PMID: 35929776]
  38. Circulation. 2016 Jun 14;133(24):2413-22 [PMID: 27169739]
  39. Circ Heart Fail. 2013 Sep 1;6(5):953-63 [PMID: 23797369]
  40. J Physiol. 2020 Jul;598(13):2575-2587 [PMID: 32347547]
  41. Circ Heart Fail. 2022 Jan;15(1):e009101 [PMID: 34963308]

Grants

  1. 1K23HLi32048/NIH HHS
  2. UL1 TR002535/NCATS NIH HHS
  3. P01 HL158507/NHLBI NIH HHS
  4. T32HL00785-48/NIH HHS
  5. T32 HL007085/NHLBI NIH HHS
  6. UM1 TR004399/NCATS NIH HHS
  7. K23 HL132048/NHLBI NIH HHS
  8. R01 HL144727/NHLBI NIH HHS
  9. UL1TR002535/NIH HHS
  10. I01 BX002042/BLRD VA

MeSH Term

Humans
Male
Adult
Hypoxia
Female
Exercise
Ventricular Function, Right
Oxygen Consumption
Exercise Test
Heart Ventricles

Word Cloud

Created with Highcharts 10.0.0exercisehypoxicacutenormoxichypoxiaRVsubmaximalright2 = 050%conditionsPAventricularperformanceparticipants1oxygen12testing3increasedcouplingarterialpressuresexertionalhealthycompletednon-invasiveCPETinvasivecatheterizationanalysisvaluesl/minpressuresignificantlyrestcontractilitymaintainedventricular-arterialwithinnormallimitsexposureventricleAcuteincreasespulmonarythougheffectfunctioncontroversialobjectivestudycharacterizeTen34 ± 10years7 malesthreevisits:visitsincludedfractioninspired21isobariccardiopulmonarydeterminenormoxic/hypoxicmaximaluptakeVisitinvolvedhaemodynamicassessmentsrandomized1:1eitherSwan-Ganzconductancequantifyviapressure-volumeArterialsaturationdeterminedbloodgasradialvisitMedianinterquartilerange984366846225respectivelyP < 00001MeantransitioningP = 00014MetricsincludingpreloadrecruitablestrokeworkdP/dtend-systolictransitionVentricular-arterialdeclinedremainedconclusionrestingfunctionspreservedresponseassociatedincreaseKEYPOINTS:augmentslusitropyenergeticsperiodsmetabolicdemandegdecreasesremainsensuringcardiacoutputsystemicperfusiondatadescribephysiologicalresponsesoccurshighaltitudeand/orrespiratoryfailureRighthaemodynamics

Similar Articles

Cited By

No available data.