Machine Learning Accelerates De Novo Design of Antimicrobial Peptides.

Kedong Yin, Wen Xu, Shiming Ren, Qingpeng Xu, Shaojie Zhang, Ruiling Zhang, Mengwan Jiang, Yuhong Zhang, Degang Xu, Ruifang Li
Author Information
  1. Kedong Yin: Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, 100 Lianhua Street, Zhengzhou, 450001, Henan, People's Republic of China.
  2. Wen Xu: Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, 100 Lianhua Street, Zhengzhou, 450001, Henan, People's Republic of China. xw@haut.edu.cn.
  3. Shiming Ren: Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, 100 Lianhua Street, Zhengzhou, 450001, Henan, People's Republic of China.
  4. Qingpeng Xu: Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, 100 Lianhua Street, Zhengzhou, 450001, Henan, People's Republic of China.
  5. Shaojie Zhang: Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, 100 Lianhua Street, Zhengzhou, 450001, Henan, People's Republic of China.
  6. Ruiling Zhang: Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, 100 Lianhua Street, Zhengzhou, 450001, Henan, People's Republic of China.
  7. Mengwan Jiang: School of Artificial Intelligence and Big Data, Henan University of Technology, Zhengzhou, 450001, Henan, People's Republic of China.
  8. Yuhong Zhang: School of Artificial Intelligence and Big Data, Henan University of Technology, Zhengzhou, 450001, Henan, People's Republic of China.
  9. Degang Xu: College of Information Science and Engineering, Henan University of Technology, 100 Lianhua Street, Zhengzhou, 450001, Henan, People's Republic of China. xudegang@haut.edu.cn.
  10. Ruifang Li: Key Laboratory of Functional Molecules for Biomedical Research, Henan University of Technology, 100 Lianhua Street, Zhengzhou, 450001, Henan, People's Republic of China. lrf@haut.edu.cn. ORCID

Abstract

Efficient and precise design of antimicrobial peptides (AMPs) is of great importance in the field of AMP development. Computing provides opportunities for peptide de novo design. In the present investigation, a new machine learning-based AMP prediction model, AP_Sin, was trained using 1160 AMP sequences and 1160 non-AMP sequences. The results showed that AP_Sin correctly classified 94.61% of AMPs on a comprehensive dataset, outperforming the mainstream and open-source models (Antimicrobial Peptide Scanner vr.2, iAMPpred and AMPlify) and being effective in identifying AMPs. In addition, a peptide sequence generator, AP_Gen, was devised based on the concept of recombining dominant amino acids and dipeptide compositions. After inputting the parameters of the 71 tridecapeptides from antimicrobial peptides database (APD3) into AP_Gen, a tridecapeptide bank consisting of de novo designed 17,496 tridecapeptide sequences were randomly generated, from which 2675 candidate AMP sequences were identified by AP_Sin. Chemical synthesis was performed on 180 randomly selected candidate AMP sequences, of which 18 showed high antimicrobial activities against a wide range of the tested pathogenic microorganisms, and 16 of which had a minimal inhibitory concentration of less than 10 μg/mL against at least one of the tested pathogenic microorganisms. The method established in this research accelerates the discovery of valuable candidate AMPs and provides a novel approach for de novo design of antimicrobial peptides.

Keywords

References

  1. United Nations Environment Programme (2023) Bracing for Superbugs: Strengthening environmental action in the One Health response to antimicrobial resistance. Geneva. https://www.unep.org/resources/superbugs/environmental-action . Accessed 5 Mar 2023
  2. Huemer M, Shambat SM, Brugger SD et al (2020) Antibiotic resistance and persistence—implications for human health and treatment perspectives. EMBO Rep 21(12):51034. https://doi.org/10.15252/embr.202051034 [DOI: 10.15252/embr.202051034]
  3. Hafeez AB, Jiang X, Bergen PJ et al (2021) Antimicrobial Peptides: an update on classifications and databases. Int J Mol Sci 22(21):11691. https://doi.org/10.3390/ijms222111691 [DOI: 10.3390/ijms222111691]
  4. Luo Y, Song Y (2021) Mechanism of antimicrobial peptides: antimicrobial, anti-inflammatory and antibiofilm activities. Int J Mol Sci 22(21):11401. https://doi.org/10.3390/ijms222111401 [DOI: 10.3390/ijms222111401]
  5. Mahlapuu M, Håkansson J, Ringstad L et al (2016) Antimicrobial peptides: an emerging category of therapeutic agents. Front Cell Infect Microbiol 6:194. https://doi.org/10.3389/fcimb.2016.00194 [DOI: 10.3389/fcimb.2016.00194]
  6. Deo S, Turton KL, Kainth T et al (2022) Strategies for improving antimicrobial peptide production. Biotechnol Adv 59:107968. https://doi.org/10.1016/j.biotechadv.2022.107968 [DOI: 10.1016/j.biotechadv.2022.107968]
  7. Van Oort CM, Ferrell JB, Remington JM et al (2021) AMPGAN v2: machine learning-guided design of antimicrobial peptides. J Chem Inf Model 61(5):2198–2207. https://doi.org/10.1021/acs.jcim.0c01441 [DOI: 10.1021/acs.jcim.0c01441]
  8. Zhang J, Yang L, Tian Z et al (2021) Large-scale screening of antifungal peptides based on quantitative structure-activity relationship. ACS Med Chem Lett 13(1):99–104. https://doi.org/10.1021/acsmedchemlett.1c00556 [DOI: 10.1021/acsmedchemlett.1c00556]
  9. Wang C, Garlick S, Zloh M (2021) Deep learning for novel antimicrobial peptide design. Biomolecules 11(3):471. https://doi.org/10.3390/biom11030471 [DOI: 10.3390/biom11030471]
  10. Zhang H, Saravanan KM, Wei Y et al (2023) Deep learning-based bioactive therapeutic peptide generation and screening. J Chem Inf Model 63(3):835–845. https://doi.org/10.1021/acs.jcim.2c01485 [DOI: 10.1021/acs.jcim.2c01485]
  11. Sartor RC, Noshay J, Springer NM et al (2019) Identification of the expressome by machine learning on omics data. Proc Natl Acad Sci USA 116(36):18119–18125. https://doi.org/10.1073/pnas.1813645116 [DOI: 10.1073/pnas.1813645116]
  12. Tyanova S, Temu T, Sinitcyn P et al (2016) The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 13(9):731–740. https://doi.org/10.1038/nmeth.3901 [DOI: 10.1038/nmeth.3901]
  13. Svenson J, Molchanova N, Schroeder CI (2020) Antimicrobial peptide mimics for clinical use: does size matter? Front Immunol 13:915368. https://doi.org/10.3389/fimmu.2022.915368 [DOI: 10.3389/fimmu.2022.915368]
  14. Li R, Wu J, He F et al (2023) Rational design, synthesis, antifungal evaluation and docking studies of antifungal peptide CGA-N12 analogues based on the target CtKRE9. Bioorg Chem 132:106355. https://doi.org/10.1016/j.bioorg.2023.106355 [DOI: 10.1016/j.bioorg.2023.106355]
  15. Veltri D, Kamath U, Shehu A (2018) Deep learning improves antimicrobial peptide recognition. Bioinformatics 34(16):2740–2747. https://doi.org/10.1093/bioinformatics/bty179 [DOI: 10.1093/bioinformatics/bty179]
  16. Meher PK, Sahu TK, Saini V et al (2017) Predicting antimicrobial peptides with improved accuracy by incorporating the compositional, physico-chemical and structural features into Chou’s general PseAAC. Sci Rep 7(1):42362. https://doi.org/10.1038/srep42362 [DOI: 10.1038/srep42362]
  17. Li C, Sutherland D, Hammond SA et al (2020) AMPlify: attentive deep learning model for discovery of novel antimicrobial peptides effective against WHO priority pathogens. BMC Genomics 23(1):77. https://doi.org/10.1186/s12864-022-08310-4 [DOI: 10.1186/s12864-022-08310-4]
  18. Huang J, Xu Y, Xue Y et al (2023) Identification of potent antimicrobial peptides via a machine-learning pipeline that mines the entire space of peptide sequences. Nat Biomed Eng 7(6):797–810. https://doi.org/10.1038/s41551-022-00991-2 [DOI: 10.1038/s41551-022-00991-2]
  19. Das P, Sercu T, Wadhawan K et al (2021) Accelerated antimicrobial discovery via deep generative models and molecular dynamics simulations. Nat Biomed Eng 5(6):613–623. https://doi.org/10.1038/s41551-021-00689-x [DOI: 10.1038/s41551-021-00689-x]
  20. Cao Q, Ge C, Wang X et al (2023) Designing antimicrobial peptides using deep learning and molecular dynamic simulations. Brief Bioinform 24(2):bbad058. https://doi.org/10.1093/bib/bbad058 [DOI: 10.1093/bib/bbad058]
  21. Bagherian M, Sabeti E, Wang K et al (2021) Machine learning approaches and databases for prediction of drug-target interaction: a survey paper. Brief Bioinform 22(1):247–269. https://doi.org/10.1093/bib/bbz157 [DOI: 10.1093/bib/bbz157]
  22. Javeed A, Dallora A, Berglund J et al (2023) Machine learning for dementia prediction: a systematic review and future research directions. J Med Syst 47(1):17. https://doi.org/10.1007/s10916-023-01906-7 [DOI: 10.1007/s10916-023-01906-7]
  23. Rustam F, Reshi AA, Mehmood A et al (2020) COVID-19 future forecasting using supervised machine learning models. IEEE Access 8:101489–101499. https://doi.org/10.1109/access.2020.2997311 [DOI: 10.1109/access.2020.2997311]
  24. Uddin S, Khan A, Hossain ME et al (2019) Comparing different supervised machine learning algorithms for disease prediction. BMC Med Inform Decis Mak 19(1):281. https://doi.org/10.1186/s12911-019-1004-8 [DOI: 10.1186/s12911-019-1004-8]
  25. Topaz M, Murga L, Gaddis KM et al (2019) Mining fall-related information in clinical notes: comparison of rule-based and novel word embedding-based machine learning approaches. J Biomed Inform 90:103103. https://doi.org/10.1016/j.jbi.2019.103103 [DOI: 10.1016/j.jbi.2019.103103]
  26. Bui H-L, Tran Q-C (2021) A new approach for tuning control rule based on hedge algebras theory and application in structural vibration control. J Vib Control 27(23–24):2686–2700. https://doi.org/10.1177/1077546320964307 [DOI: 10.1177/1077546320964307]
  27. Dandea V, Grigoras G (2023) Expert system integrating rule-based reasoning to voltage control in photovoltaic-systems-rich low voltage electric distribution networks: a review and results of a case study. Appl Sci 13(10):6158. https://doi.org/10.3390/app13106158 [DOI: 10.3390/app13106158]
  28. Abdel Monaim SAH, Jad YE, El-Faham A et al (2018) Teixobactin as a scaffold for unlimited new antimicrobial peptides: SAR study. Bioorgan Med Chem 26(10):2788–2796. https://doi.org/10.1016/j.bmc.2017.09.040 [DOI: 10.1016/j.bmc.2017.09.040]
  29. Porto WF, Irazazabal L, Alves ESF et al (2018) In silico optimization of a guava antimicrobial peptide enables combinatorial exploration for peptide design. Nat Commun 9(1):1490. https://doi.org/10.1038/s41467-018-03746-3 [DOI: 10.1038/s41467-018-03746-3]

Grants

  1. 2323000421165/Natural Science Foundation of Henan Province
  2. 2020ZKCJ23/Innovative Funds Plan of Henan University of Technology

MeSH Term

Machine Learning
Antimicrobial Peptides
Microbial Sensitivity Tests
Drug Design
Amino Acid Sequence

Chemicals

Antimicrobial Peptides

Word Cloud

Created with Highcharts 10.0.0AMPsequencesdesignantimicrobialAMPsnovoAntimicrobialpeptidespeptidedeAP_Sincandidateprovides1160showedAP_GentridecapeptiderandomlytestedpathogenicmicroorganismsMachineDeEfficientprecisegreatimportancefielddevelopmentComputingopportunitiespresentinvestigationnewmachinelearning-basedpredictionmodeltrainedusingnon-AMPresultscorrectlyclassified9461%comprehensivedatasetoutperformingmainstreamopen-sourcemodelsPeptideScannervr2iAMPpredAMPlifyeffectiveidentifyingadditionsequencegeneratordevisedbasedconceptrecombiningdominantaminoacidsdipeptidecompositionsinputtingparameters71tridecapeptidesdatabaseAPD3bankconsistingdesigned17496generated2675identifiedChemicalsynthesisperformed180selected18highactivitieswiderange16minimalinhibitoryconcentrationless10 μg/mLleastonemethodestablishedresearchacceleratesdiscoveryvaluablenovelapproachLearningAcceleratesNovoDesignPeptidesactivityBioinformaticslearning

Similar Articles

Cited By