A multidimensional comparative study of help-seeking messages on Weibo under different stages of COVID-19 pandemic in China.

Jianhong Jiang, Chenyan Yao, Xinyi Song
Author Information
  1. Jianhong Jiang: School of Business, Guilin University of Electronic Technology, Guilin, Guangxi, China.
  2. Chenyan Yao: School of Business, Guilin University of Electronic Technology, Guilin, Guangxi, China.
  3. Xinyi Song: School of Business, Guilin University of Electronic Technology, Guilin, Guangxi, China.

Abstract

Objective: During the COVID-19 pandemic, people posted help-seeking messages on Weibo, a mainstream social media in China, to solve practical problems. As viruses, policies, and perceptions have all changed, help-seeking behavior on Weibo has been shown to evolve in this paper.
Methods: We compare and analyze the help-seeking messages from three dimensions: content categories, time distribution, and retweeting influencing factors. First, we crawled the help-seeking messages from Weibo, and successively used CNN and xlm-roberta-large models for text classification to analyze the changes of help-seeking messages in different stages from the content categories dimension. Subsequently, we studied the time distribution of help-seeking messages and calculated the time lag using TLCC algorithm. Finally, we analyze the changes of the retweeting influencing factors of help-seeking messages in different stages by negative binomial regression.
Results: (1) Help-seekers in different periods have different emphasis on content. (2) There is a significant correlation between new daily help-seeking messages and new confirmed cases in the middle stage (1/1/2022-5/20/2022), with a 16-day time lag, but there is no correlation in the latter stage (12/10/2022-2/25/2023). (3) In all the periods, pictures or videos, and the length of the text have a significant positive effect on the number of retweets of help-seeking messages, but other factors do not have exactly the same effect on the retweeting volume.
Conclusion: This paper demonstrates the evolution of help-seeking messages during different stages of the COVID-19 pandemic in three dimensions: content categories, time distribution, and retweeting influencing factors, which are worthy of reference for decision-makers and help-seekers, as well as provide thinking for subsequent studies.

Keywords

References

  1. PLoS One. 2020 Nov 3;15(11):e0241465 [PMID: 33141860]
  2. Science. 2020 May 8;368(6491):638-642 [PMID: 32234804]
  3. Comput Human Behav. 2020 Sep;110:106380 [PMID: 32292239]
  4. Front Public Health. 2023 Apr 14;11:1142461 [PMID: 37124799]
  5. Mol Psychiatry. 2021 Sep;26(9):4813-4822 [PMID: 33483692]
  6. Inf Process Manag. 2021 Jul;58(4):102562 [PMID: 33678941]
  7. Int J Environ Res Public Health. 2023 Jan 16;20(2): [PMID: 36674373]
  8. Front Public Health. 2022 Sep 14;10:871722 [PMID: 36187642]
  9. IEEE Trans Neural Netw. 1994;5(2):157-66 [PMID: 18267787]
  10. Int J Environ Res Public Health. 2022 Dec 31;20(1): [PMID: 36613100]
  11. Transp Res Interdiscip Perspect. 2023 Mar;18:100784 [PMID: 36844954]
  12. Front Psychol. 2021 Nov 17;12:783135 [PMID: 34867695]
  13. Herz. 2023 Jun;48(3):226-228 [PMID: 37294456]
  14. Front Psychiatry. 2023 Mar 07;14:1040636 [PMID: 36960461]
  15. Viruses. 2021 Jan 29;13(2): [PMID: 33572857]
  16. J Med Internet Res. 2020 Nov 26;22(11):e22152 [PMID: 33151894]
  17. J Med Internet Res. 2020 May 17;22(5):e19087 [PMID: 32401210]
  18. J Med Econ. 2022 Jan-Dec;25(1):437-449 [PMID: 35289700]
  19. Appl Res Qual Life. 2021;16(5):1925-1942 [PMID: 32837605]
  20. Inf Process Manag. 2022 Sep;59(5):102997 [PMID: 35757511]
  21. J Health Commun. 2018;23(12):1026-1035 [PMID: 30404564]
  22. J Med Internet Res. 2020 Oct 15;22(10):e22910 [PMID: 33001838]
  23. Front Psychiatry. 2022 Dec 01;13:1009810 [PMID: 36532171]
  24. BMC Public Health. 2023 Apr 19;23(1):710 [PMID: 37076879]
  25. Front Public Health. 2022 Nov 04;10:1004558 [PMID: 36407973]
  26. Digit Health. 2022 Mar 18;8:20552076221085061 [PMID: 35340906]
  27. Front Public Health. 2023 Jan 04;10:1035536 [PMID: 36684943]
  28. Int J Environ Res Public Health. 2020 Aug 20;17(17): [PMID: 32825472]
  29. J Med Virol. 2023 Jan;95(1):e28382 [PMID: 36478381]
  30. Trends Cogn Sci. 2020 Apr;24(4):316-328 [PMID: 32160568]
  31. Acta Trop. 2019 May;193:50-59 [PMID: 30790554]

MeSH Term

Humans
COVID-19
Pandemics
SARS-CoV-2
China
Social Media

Word Cloud

Created with Highcharts 10.0.0help-seekingmessagesdifferenttimeCOVID-19WeibocontentretweetingfactorsstagespandemicanalyzecategoriesdistributioninfluencingsocialmediaChinabehaviorpaperthreedimensions:textchangeslagregressionperiodssignificantcorrelationnewstageeffectObjective:peoplepostedmainstreamsolvepracticalproblemsvirusespoliciesperceptionschangedshownevolveMethods:compareFirstcrawledsuccessivelyusedCNNxlm-roberta-largemodelsclassificationdimensionSubsequentlystudiedcalculatedusingTLCCalgorithmFinallynegativebinomialResults:1Help-seekersemphasis2dailyconfirmedcasesmiddle1/1/2022-5/20/202216-daylatter12/10/2022-2/25/20233picturesvideoslengthpositivenumberretweetsexactlyvolumeConclusion:demonstratesevolutionworthyreferencedecision-makershelp-seekerswellprovidethinkingsubsequentstudiesmultidimensionalcomparativestudydataminingneuralnetworksanalysis

Similar Articles

Cited By