Single-Cell Analysis of Rohon-Beard Neurons Implicates Fgf Signaling in Axon Maintenance and Cell Survival.

Adam M Tuttle, Lauren N Miller, Lindsey J Royer, Hua Wen, Jimmy J Kelly, Nicholas L Calistri, Laura M Heiser, Alex V Nechiporuk
Author Information
  1. Adam M Tuttle: Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239. ORCID
  2. Lauren N Miller: Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239.
  3. Lindsey J Royer: Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239.
  4. Hua Wen: Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239.
  5. Jimmy J Kelly: Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239.
  6. Nicholas L Calistri: Biomedical Engineering, Oregon Health & Science University, Portland, Oregon 97239. ORCID
  7. Laura M Heiser: Biomedical Engineering, Oregon Health & Science University, Portland, Oregon 97239.
  8. Alex V Nechiporuk: Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239 nechipor@ohsu.edu.

Abstract

Peripheral sensory neurons are a critical part of the nervous system that transmit a multitude of sensory stimuli to the central nervous system. During larval and juvenile stages in zebrafish, this function is mediated by Rohon-Beard somatosensory neurons (RBs). RBs are optically accessible and amenable to experimental manipulation, making them a powerful system for mechanistic investigation of sensory neurons. Previous studies provided evidence that RBs fall into multiple subclasses; however, the number and molecular makeup of these potential RB subtypes have not been well defined. Using a single-cell RNA sequencing (scRNA-seq) approach, we demonstrate that larval RBs in zebrafish fall into three, largely nonoverlapping classes of neurons. We also show that RBs are molecularly distinct from trigeminal neurons in zebrafish. Cross-species transcriptional analysis indicates that one RB subclass is similar to a mammalian group of A-fiber sensory neurons. Another RB subclass is predicted to sense multiple modalities, including mechanical stimulation and chemical irritants. We leveraged our scRNA-seq data to determine that the fibroblast growth factor (Fgf) pathway is active in RBs. Pharmacological and genetic inhibition of this pathway led to defects in axon maintenance and RB cell death. Moreover, this can be phenocopied by treatment with dovitinib, an FDA-approved Fgf inhibitor with a common side effect of peripheral neuropathy. Importantly, dovitinib-mediated axon loss can be suppressed by loss of Sarm1, a positive regulator of neuronal cell death and axonal injury. This offers a molecular target for future clinical intervention to fight neurotoxic effects of this drug.

Keywords

References

  1. J Neurosci. 2015 Jan 14;35(2):559-70 [PMID: 25589751]
  2. Elife. 2018 Mar 21;7: [PMID: 29561265]
  3. J Neurosci. 2022 Aug 10;42(32):6195-6210 [PMID: 35840323]
  4. Methods Mol Biol. 2020;2148:195-202 [PMID: 32394383]
  5. Elife. 2023 Nov 17;12: [PMID: 37975797]
  6. Neurology. 2019 Jul 9;93(2):e143-e148 [PMID: 31167931]
  7. Curr Opin Neurol. 2002 Oct;15(5):633-8 [PMID: 12352008]
  8. Nature. 2021 Feb;590(7844):129-133 [PMID: 33408418]
  9. Int J Dev Neurosci. 2007 May;25(3):155-64 [PMID: 17403595]
  10. Cell. 2003 Mar 21;112(6):819-29 [PMID: 12654248]
  11. Dev Biol. 2020 Aug 1;464(1):45-52 [PMID: 32473165]
  12. Science. 2012 Jul 27;337(6093):481-4 [PMID: 22678360]
  13. Nat Commun. 2023 Jan 23;14(1):366 [PMID: 36690629]
  14. Front Neurosci. 2017 Aug 31;11:481 [PMID: 28912674]
  15. Dev Dyn. 2007 Nov;236(11):3088-99 [PMID: 17937395]
  16. Neurotoxicol Teratol. 2013 Sep-Oct;39:69-76 [PMID: 23896048]
  17. Mol Neurobiol. 2021 Aug;58(8):3884-3902 [PMID: 33860438]
  18. J Neurobiol. 2005 Mar;62(4):425-38 [PMID: 15547934]
  19. Proc Natl Acad Sci U S A. 2022 Jul 26;119(30):e2115009119 [PMID: 35858442]
  20. Nat Genet. 2000 May;25(1):25-9 [PMID: 10802651]
  21. Commun Biol. 2020 Jan 30;3(1):49 [PMID: 32001778]
  22. Neuron. 2004 Mar 25;41(6):849-57 [PMID: 15046718]
  23. Proc Natl Acad Sci U S A. 2015 Mar 3;112(9):2859-64 [PMID: 25691753]
  24. Development. 2005 Dec;132(23):5173-83 [PMID: 16251209]
  25. Dev Biol. 2001 Nov 15;239(2):323-37 [PMID: 11784038]
  26. J Neurosci. 2008 Oct 1;28(40):10102-10 [PMID: 18829968]
  27. Nat Methods. 2012 Jun 28;9(7):676-82 [PMID: 22743772]
  28. Exp Neurol. 2021 Apr;338:113607 [PMID: 33460644]
  29. J Exp Zool. 1961 Nov;148:91-123 [PMID: 13904079]
  30. Dev Biol. 2020 Mar 15;459(2):100-108 [PMID: 31782996]
  31. Neuron. 2017 Feb 22;93(4):806-821.e9 [PMID: 28162808]
  32. Fundam Clin Pharmacol. 2015 Jun;29(3):310-5 [PMID: 25711853]
  33. Brain. 2016 Dec;139(Pt 12):3092-3108 [PMID: 27797810]
  34. Leuk Res. 2010 Feb;34(2):129-34 [PMID: 19783301]
  35. Target Oncol. 2015 Jun;10(2):199-213 [PMID: 25213039]
  36. Cancer Chemother Pharmacol. 2013 Mar;71(3):619-26 [PMID: 23228992]
  37. Dev Biol. 2000 Oct 15;226(2):220-30 [PMID: 11023682]
  38. Cell Rep. 2013 Jul 11;4(1):66-75 [PMID: 23831029]
  39. Dev Dyn. 1995 Jul;203(3):253-310 [PMID: 8589427]
  40. Am J Clin Oncol. 2019 Feb;42(2):184-189 [PMID: 30418178]
  41. Nat Biotechnol. 2018 Jun;36(5):411-420 [PMID: 29608179]
  42. J Neurophysiol. 2011 Jan;105(1):442-53 [PMID: 20962070]
  43. Nature. 2004 Jan 15;427(6971):260-5 [PMID: 14712238]
  44. J Neurosci. 2008 Feb 27;28(9):2110-8 [PMID: 18305245]
  45. FASEB J. 2023 Jul;37(7):e23043 [PMID: 37342898]
  46. Biomed Res Int. 2015;2015:976068 [PMID: 26114119]
  47. Elife. 2020 Aug 24;9: [PMID: 32831172]
  48. Wound Repair Regen. 2019 Jul;27(4):375-385 [PMID: 31017740]
  49. Brain Res. 2007 Oct 12;1174:66-75 [PMID: 17868657]
  50. Development. 2008 Sep;135(18):3063-70 [PMID: 18701543]
  51. BMC Dev Biol. 2007 Jun 06;7:62 [PMID: 17553162]
  52. Front Mol Biosci. 2021 Sep 07;8:742903 [PMID: 34557523]
  53. Elife. 2021 Aug 16;10: [PMID: 34397384]
  54. Dev Dyn. 2009 Apr;238(4):931-43 [PMID: 19301392]
  55. Dev Cell. 2018 Aug 6;46(3):344-359.e4 [PMID: 30032992]
  56. J Neurosci. 2010 Jul 14;30(28):9359-67 [PMID: 20631165]
  57. Development. 1990 Oct;110(2):491-504 [PMID: 1723944]
  58. Development. 2006 Oct;133(19):3827-36 [PMID: 16943272]
  59. Development. 2012 Feb;139(3):591-600 [PMID: 22190641]
  60. Clin Cancer Res. 2006 Dec 15;12(24):7271-8 [PMID: 17189398]
  61. J Clin Oncol. 2010 Jan 20;28(3):398-404 [PMID: 20008620]
  62. J Neurosci. 2022 Jul 25;: [PMID: 35882558]
  63. Ann Oncol. 2010 Jul;21(7):1559-1560 [PMID: 20444848]
  64. PLoS Biol. 2011 May;9(5):e1000621 [PMID: 21629674]
  65. Cancer Invest. 2003 Jun;21(3):439-51 [PMID: 12901290]
  66. Nat Neurosci. 2011 May;14(5):595-602 [PMID: 21460831]
  67. Development. 2007 Feb;134(3):611-23 [PMID: 17215310]
  68. Neurosci Biobehav Rev. 2013 Dec;37(10 Pt 2):2774-87 [PMID: 24091024]
  69. Proc Natl Acad Sci U S A. 2016 Apr 12;113(15):E2189-98 [PMID: 27035978]
  70. J Neurosci. 2013 Mar 20;33(12):5249-60 [PMID: 23516290]
  71. Science. 2016 Apr 8;352(6282):189-96 [PMID: 27124452]
  72. Development. 2000 Jul;127(13):2873-82 [PMID: 10851132]
  73. Neuron. 2022 Jun 1;110(11):1806-1821.e8 [PMID: 35349784]
  74. J Neurol Neurosurg Psychiatry. 2018 Jun;89(6):636-641 [PMID: 29439162]
  75. Proc Natl Acad Sci U S A. 2011 Mar 29;108(13):5425-30 [PMID: 21383146]
  76. Curr Cancer Drug Targets. 2022;22(1):49-76 [PMID: 34288840]
  77. Science. 2015 Apr 24;348(6233):453-7 [PMID: 25908823]
  78. Dev Neurobiol. 2013 Feb;73(2):152-67 [PMID: 22865660]
  79. Brain. 2021 Nov 29;144(10):3226-3238 [PMID: 33964142]

Grants

  1. R01 NS111419/NINDS NIH HHS
  2. R21 CA260025/NCI NIH HHS
  3. T32 CA254888/NCI NIH HHS

MeSH Term

Animals
Zebrafish
Animals, Genetically Modified
Cell Survival
Sensory Receptor Cells
Axons
Single-Cell Analysis
Mammals

Word Cloud

Created with Highcharts 10.0.0sensoryneuronsRBsRBsystemzebrafishFgfnervouslarvalRohon-BeardfallmultiplemolecularscRNA-seqsubclasspathwayaxoncelldeathcandovitinibneuropathylossSarm1PeripheralcriticalparttransmitmultitudestimulicentraljuvenilestagesfunctionmediatedsomatosensoryopticallyaccessibleamenableexperimentalmanipulationmakingpowerfulmechanisticinvestigationPreviousstudiesprovidedevidencesubclasseshowevernumbermakeuppotentialsubtypeswelldefinedUsingsingle-cellRNAsequencingapproachdemonstratethreelargelynonoverlappingclassesalsoshowmolecularlydistincttrigeminalCross-speciestranscriptionalanalysisindicatesonesimilarmammaliangroupA-fiberAnotherpredictedsensemodalitiesincludingmechanicalstimulationchemicalirritantsleverageddatadeterminefibroblastgrowthfactoractivePharmacologicalgeneticinhibitionleddefectsmaintenanceMoreoverphenocopiedtreatmentFDA-approvedinhibitorcommonsideeffectperipheralImportantlydovitinib-mediatedsuppressedpositiveregulatorneuronalaxonalinjuryofferstargetfutureclinicalinterventionfightneurotoxiceffectsdrugSingle-CellAnalysisNeuronsImplicatesSignalingAxonMaintenanceCellSurvivalRohon–Beardneuronfgfsignalingaxons

Similar Articles

Cited By