Determinants of private-sector antibiotic consumption in India: findings from a quasi-experimental fixed-effects regression analysis using cross-sectional time-series data, 2011-2019.

Shaffi Fazaludeen Koya, Senthil Ganesh, Sakthivel Selvaraj, Veronika J Wirtz, Sandro Galea, Peter C Rockers
Author Information
  1. Shaffi Fazaludeen Koya: School of Public Health, Boston University, Boston, MA, USA. fmshaffi@bu.edu.
  2. Senthil Ganesh: Public Health Foundation of India, New Delhi, Delhi, India.
  3. Sakthivel Selvaraj: Public Health Foundation of India, New Delhi, Delhi, India.
  4. Veronika J Wirtz: School of Public Health, Boston University, Boston, MA, USA.
  5. Sandro Galea: School of Public Health, Boston University, Boston, MA, USA.
  6. Peter C Rockers: School of Public Health, Boston University, Boston, MA, USA.

Abstract

The consumption of antibiotics varies between and within countries. However, our understanding of the key drivers of antibiotic consumption is largely limited to observational studies. Using Indian data that showed substantial differences between states and changes over years, we conducted a quasi-experimental fixed-effects regression study to examine the determinants of private-sector antibiotic consumption. Antibiotic consumption decreased by 10.2 antibiotic doses per 1000 persons per year for every ₹1000 (US$12.9) increase in per-capita gross domestic product. Antibiotic consumption decreased by 46.4 doses per 1000 population per year for every 1% increase in girls' enrollment rate in tertiary education. The biggest determinant of private sector antibiotic use was government spending on health-antibiotic use decreased by 461.4 doses per 1000 population per year for every US$12.9 increase in per-capita government health spending. Economic progress, social progress, and increased public investment in health can reduce private-sector antibiotic use.

References

  1. Lancet Reg Health Southeast Asia. 2022 Jun 22;4:100025 [PMID: 37383993]
  2. Health Care Women Int. 2011 Oct;32(10):870-86 [PMID: 21919625]
  3. S Afr Med J. 2015 Apr 06;105(5):325 [PMID: 26242647]
  4. Proc Natl Acad Sci U S A. 2018 Dec 18;115(51):12896-12901 [PMID: 30559195]
  5. Can J Infect Dis Med Microbiol. 2010 Fall;21(3):e99-e106 [PMID: 21886643]
  6. Antimicrob Resist Infect Control. 2022 Feb 3;11(1):24 [PMID: 35115030]
  7. Ups J Med Sci. 2014 May;119(2):205-8 [PMID: 24694025]
  8. Indian J Med Res. 2012 Sep;136(3):421-31 [PMID: 23041735]
  9. Vaccine. 2012 Oct 12;30(46):6509-14 [PMID: 22940379]
  10. Curr Med Res Opin. 2020 Feb;36(2):301-327 [PMID: 31794332]
  11. PLoS One. 2021 Oct 26;16(10):e0259069 [PMID: 34699559]
  12. Lancet Infect Dis. 2015 Oct;15(10):1203-1210 [PMID: 26164481]
  13. Infez Med. 2012 Mar;20(1):37-48 [PMID: 22475659]
  14. Proc Natl Acad Sci U S A. 2018 Apr 10;115(15):E3463-E3470 [PMID: 29581252]
  15. Infect Control Hosp Epidemiol. 2018 May;39(5):584-589 [PMID: 29485018]
  16. Clin Infect Dis. 2021 Aug 16;73(4):e1011-e1017 [PMID: 33493317]
  17. BMC Public Health. 2015 Sep 17;15:908 [PMID: 26381376]
  18. Br Med Bull. 2017 Jan 1;121(1):47-60 [PMID: 28069615]
  19. JAMA. 2018 Mar 27;319(12):1187-1188 [PMID: 29584830]
  20. Ther Adv Infect Dis. 2021 Feb 15;8:2049936121991374 [PMID: 33643652]
  21. JAC Antimicrob Resist. 2022 Oct 26;4(5):dlac112 [PMID: 36320447]
  22. Glob Health Action. 2013 Mar 01;6:1-11 [PMID: 23458089]
  23. Health Expect. 1999 May;2(2):82-92 [PMID: 11281882]
  24. BMC Public Health. 2010 Oct 21;10:629 [PMID: 20964815]
  25. J Antimicrob Chemother. 2004 Aug;54(2):465-71 [PMID: 15269198]
  26. Trop Med Int Health. 2014 Jul;19(7):761-8 [PMID: 24750565]
  27. Sci Rep. 2018 Apr 23;8(1):6421 [PMID: 29686420]
  28. Clin Microbiol Infect. 2019 Oct;25(10):1213-1225 [PMID: 31284031]
  29. Health Policy. 2006 Aug 22;78(1):77-92 [PMID: 16290129]
  30. Lancet Planet Health. 2018 Sep;2(9):e398-e405 [PMID: 30177008]
  31. Lancet. 2017 Dec 2;390(10111):2437-2460 [PMID: 29150201]
  32. Nat Rev Microbiol. 2021 May;19(5):287-302 [PMID: 33542518]
  33. J Antimicrob Chemother. 2014 Feb;69(2):535-47 [PMID: 24080501]
  34. Ups J Med Sci. 2014 May;119(2):125-33 [PMID: 24735112]
  35. Lancet. 2005 Feb 5-11;365(9458):541-3 [PMID: 15705464]
  36. Health Econ Rev. 2021 Jun 4;11(1):18 [PMID: 34086126]
  37. Int J Equity Health. 2013 Mar 16;12:19 [PMID: 23497015]
  38. PLoS Med. 2019 Jun 11;16(6):e1002819 [PMID: 31185011]
  39. PLoS One. 2017 May 17;12(5):e0177547 [PMID: 28545041]
  40. J Clin Pharm Ther. 2018 Feb;43(1):59-64 [PMID: 28833324]
  41. Front Public Health. 2021 Jun 18;9:704155 [PMID: 34222191]
  42. PLoS One. 2019 Aug 9;14(8):e0220990 [PMID: 31398242]
  43. Infect Drug Resist. 2019 Dec 20;12:3903-3910 [PMID: 31908502]

MeSH Term

Female
Humans
Health Expenditures
Private Sector
Anti-Bacterial Agents
Cross-Sectional Studies
Regression Analysis
India

Chemicals

Anti-Bacterial Agents

Word Cloud

Created with Highcharts 10.0.0consumptionantibioticperprivate-sectordecreaseddoses1000yeareveryincreaseusedataquasi-experimentalfixed-effectsregressionAntibioticUS$129per-capita4populationgovernmentspendinghealthprogressantibioticsvarieswithincountriesHoweverunderstandingkeydriverslargelylimitedobservationalstudiesUsingIndianshowedsubstantialdifferencesstateschangesyearsconductedstudyexaminedeterminants102persons₹1000grossdomesticproduct461%girls'enrollmentratetertiaryeducationbiggestdeterminantprivatesectorhealth-antibiotic461EconomicsocialincreasedpublicinvestmentcanreduceDeterminantsIndia:findingsanalysisusingcross-sectionaltime-series2011-2019

Similar Articles

Cited By