Tight junction protein cingulin variant is associated with cancer susceptibility by overexpressed IQGAP1 and Rac1-dependent epithelial-mesenchymal transition.

Yi-Ting Huang, Ya-Ting Hsu, Pei-Ying Wu, Yu-Min Yeh, Peng-Chan Lin, Keng-Fu Hsu, Meng-Ru Shen
Author Information
  1. Yi-Ting Huang: Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
  2. Ya-Ting Hsu: Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
  3. Pei-Ying Wu: Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
  4. Yu-Min Yeh: Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
  5. Peng-Chan Lin: Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
  6. Keng-Fu Hsu: Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
  7. Meng-Ru Shen: Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan. mrshen@mail.ncku.edu.tw.

Abstract

BACKGROUND: Cingulin (CGN) is a pivotal cytoskeletal adaptor protein located at tight junctions. This study investigates the link between CGN mutation and increased cancer susceptibility through genetic and mechanistic analyses and proposes a potential targeted therapeutic approach.
METHODS: In a high-cancer-density family without known pathogenic variants, we performed tumor-targeted and germline whole-genome sequencing to identify novel cancer-associated variants. Subsequently, these variants were validated in a 222 cancer patient cohort, and CGN c.3560C > T was identified as a potential cancer-risk allele. Both wild-type (WT) (c.3560C > C) and variant (c.3560C > T) were transfected into cancer cell lines and incorporated into orthotopic xenograft mice model for evaluating their effects on cancer progression. Western blot, immunofluorescence analysis, migration and invasion assays, two-dimensional gel electrophoresis with mass spectrometry, immunoprecipitation assays, and siRNA applications were used to explore the biological consequence of CGN c.3560C > T.
RESULTS: In cancer cell lines and orthotopic animal models, CGN c.3560C > T enhanced tumor progression with reduced sensitivity to oxaliplatin compared to the CGN WT. The variant induced downregulation of epithelial marker, upregulation of mesenchymal marker and transcription factor, which converged to initiate epithelial-mesenchymal transition (EMT). Proteomic analysis was conducted to investigate the elements driving EMT in CGN c.3560C > T. This exploration unveiled overexpression of IQGAP1 induced by the variant, contrasting the levels observed in CGN WT. Immunoprecipitation assay confirmed a direct interaction between CGN and IQGAP1. IQGAP1 functions as a regulator of multiple GTPases, particularly the Rho family. This overexpressed IQGAP1 was consistently associated with the activation of Rac1, as evidenced by the analysis of the cancer cell line and clinical sample harboring CGN c.3560C > T. Notably, activated Rac1 was suppressed following the downregulation of IQGAP1 by siRNA. Treatment with NSC23766, a selective inhibitor for Rac1-GEF interaction, resulted in the inactivation of Rac1. This intervention mitigated the EMT program in cancer cells carrying CGN c.3560C > T. Consistently, xenograft tumors with WT CGN showed no sensitivity to NSC23766 treatment, but NSC23766 demonstrated the capacity to attenuate tumor growth harboring c.3560C > T.
CONCLUSIONS: CGN c.3560C > T leads to IQGAP1 overexpression, subsequently triggering Rac1-dependent EMT. Targeting activated Rac1 is a strategy to impede the advancement of cancers carrying this specific variant.

Keywords

References

  1. FEBS Lett. 2009 Jun 18;583(12):1817-24 [PMID: 19433088]
  2. Cell. 2008 Apr 18;133(2):340-53 [PMID: 18423204]
  3. Proc Natl Acad Sci U S A. 2004 May 18;101(20):7618-23 [PMID: 15128949]
  4. Ann N Y Acad Sci. 2009 May;1165:88-98 [PMID: 19538293]
  5. Front Biosci (Landmark Ed). 2011 Jun 01;16(7):2561-71 [PMID: 21622195]
  6. Breast Cancer Res Treat. 2008 Jul;110(2):257-68 [PMID: 17851761]
  7. Genet Med. 2016 Aug;18(8):823-32 [PMID: 26681312]
  8. Small GTPases. 2013 Oct-Dec;4(4):199-207 [PMID: 24355937]
  9. Nat Rev Mol Cell Biol. 2014 Mar;15(3):178-96 [PMID: 24556840]
  10. Science. 1994 Oct 7;266(5182):120-2 [PMID: 7939630]
  11. Genet Med. 2020 Feb;22(2):407-415 [PMID: 31406321]
  12. Cells. 2019 Apr 26;8(5): [PMID: 31027363]
  13. Oncogene. 2004 Aug 23;23(38):6445-70 [PMID: 15322516]
  14. JAMA Oncol. 2017 Sep 01;3(9):1190-1196 [PMID: 28418444]
  15. Am J Hum Genet. 2002 Aug;71(2):432-8 [PMID: 12094328]
  16. Nat Genet. 1994 Dec;8(4):399-404 [PMID: 7894493]
  17. Biochem Soc Trans. 2012 Dec 1;40(6):1378-82 [PMID: 23176484]
  18. Cell. 2011 Mar 4;144(5):646-74 [PMID: 21376230]
  19. Cancer Cell. 2019 Jul 8;36(1):68-83.e9 [PMID: 31257073]
  20. J Cell Biol. 1993 Oct;123(2):293-302 [PMID: 8408213]
  21. Nature. 2007 Mar 15;446(7133):316-9 [PMID: 17287723]
  22. J Clin Oncol. 2014 Jul 1;32(19):2001-9 [PMID: 24733792]
  23. J Cell Sci. 2005 May 15;118(Pt 10):2085-92 [PMID: 15890984]
  24. JAMA. 2017 Jun 20;317(23):2402-2416 [PMID: 28632866]
  25. J Biol Chem. 2008 Jan 18;283(3):1692-1704 [PMID: 17984089]
  26. Science. 1998 Jan 23;279(5350):509-14 [PMID: 9438836]
  27. J Cell Sci. 2013 Sep 15;126(Pt 18):4121-35 [PMID: 23843620]
  28. Nat Rev Mol Cell Biol. 2016 Sep;17(9):564-80 [PMID: 27353478]
  29. Cell Commun Signal. 2009 Sep 08;7:23 [PMID: 19737400]
  30. Trends Cell Biol. 2006 May;16(5):242-9 [PMID: 16595175]
  31. Cancers (Basel). 2020 Mar 12;12(3): [PMID: 32178475]
  32. Oncogene. 2008 Nov 24;27(55):6958-69 [PMID: 19029937]
  33. Mol Cancer Res. 2017 Aug;15(8):1106-1116 [PMID: 28461325]
  34. J Biol Chem. 2009 May 29;284(22):15339-52 [PMID: 19366706]
  35. Nat Rev Cancer. 2002 Jun;2(6):442-54 [PMID: 12189386]
  36. Bioessays. 2005 Jun;27(6):602-13 [PMID: 15892119]
  37. Cancer Biol Ther. 2012 Jun;13(8):647-56 [PMID: 22549160]
  38. Mol Cell Biol. 2001 Mar;21(6):2165-83 [PMID: 11238950]
  39. J Cell Sci. 2015 Mar 1;128(5):853-62 [PMID: 25588839]
  40. Science. 1994 Sep 30;265(5181):2088-90 [PMID: 8091231]
  41. Dev Cell. 2005 May;8(5):777-86 [PMID: 15866167]
  42. Carcinogenesis. 2006 Aug;27(8):1593-9 [PMID: 16474176]
  43. Mol Cancer Ther. 2009 Jun;8(6):1557-69 [PMID: 19509242]
  44. Lab Invest. 2018 Aug;98(8):989-998 [PMID: 29884911]
  45. Br J Cancer. 2015 Feb 17;112(4):613-20 [PMID: 25611303]
  46. J Clin Oncol. 2005 Jan 10;23(2):276-92 [PMID: 15637391]
  47. Int J Biochem Cell Biol. 2007;39(12):2289-302 [PMID: 17766170]

Grants

  1. MOST 111-2634-F-006-002/Ministry of Science and Technology
  2. MOHW 111-TDU-B-221-114005/Health Promotion Administration, Ministry of Health and Welfare

MeSH Term

Animals
Humans
Mice
Cell Movement
Cytoskeletal Proteins
Epithelial-Mesenchymal Transition
Neoplasms
Proteomics
rac1 GTP-Binding Protein
RNA, Small Interfering
Tight Junction Proteins

Chemicals

Cytoskeletal Proteins
rac1 GTP-Binding Protein
RNA, Small Interfering
Tight Junction Proteins
RAC1 protein, human
IQ motif containing GTPase activating protein 1

Word Cloud

Created with Highcharts 10.0.0CGNc3560C > TcancerIQGAP1variantRac1WTEMTvariantscellanalysistransitionNSC23766CingulinproteinsusceptibilitypotentialfamilylinesorthotopicxenograftprogressionassayssiRNAtumorsensitivityinduceddownregulationmarkerepithelial-mesenchymaloverexpressioninteractionoverexpressedassociatedharboringactivatedcarryingRac1-dependentBACKGROUND:pivotalcytoskeletaladaptorlocatedtightjunctionsstudyinvestigateslinkmutationincreasedgeneticmechanisticanalysesproposestargetedtherapeuticapproachMETHODS:high-cancer-densitywithoutknownpathogenicperformedtumor-targetedgermlinewhole-genomesequencingidentifynovelcancer-associatedSubsequentlyvalidated222patientcohortidentifiedcancer-riskallelewild-type3560C > CtransfectedincorporatedmicemodelevaluatingeffectsWesternblotimmunofluorescencemigrationinvasiontwo-dimensionalgelelectrophoresismassspectrometryimmunoprecipitationapplicationsusedexplorebiologicalconsequenceRESULTS:animalmodelsenhancedreducedoxaliplatincomparedepithelialupregulationmesenchymaltranscriptionfactorconvergedinitiateProteomicconductedinvestigateelementsdrivingexplorationunveiledcontrastinglevelsobservedImmunoprecipitationassayconfirmeddirectfunctionsregulatormultipleGTPasesparticularlyRhoconsistentlyactivationevidencedlineclinicalsampleNotablysuppressedfollowingTreatmentselectiveinhibitorRac1-GEFresultedinactivationinterventionmitigatedprogramcellsConsistentlytumorsshowedtreatmentdemonstratedcapacityattenuategrowthCONCLUSIONS:leadssubsequentlytriggeringTargetingstrategyimpedeadvancementcancersspecificTightjunctioncingulinCancer-predisposingEpithelial-mesenchymal

Similar Articles

Cited By