TICI: a taxon-independent community index for eDNA-based ecological health assessment.

Shaun P Wilkinson, Amy A Gault, Susan A Welsh, Joshua P Smith, Bruno O David, Andy S Hicks, Daniel R Fake, Alastair M Suren, Megan R Shaffer, Simon N Jarman, Michael Bunce
Author Information
  1. Shaun P Wilkinson: Wilderlab NZ Ltd., Wellington, New Zealand.
  2. Amy A Gault: Wilderlab NZ Ltd., Wellington, New Zealand.
  3. Susan A Welsh: Wilderlab NZ Ltd., Wellington, New Zealand.
  4. Joshua P Smith: School of Science, The University of Waikato, Hamilton, Waikato, New Zealand.
  5. Bruno O David: Waikato Regional Council, Hamilton, Waikato, New Zealand.
  6. Andy S Hicks: Ministry for the Environment, Wellington, New Zealand.
  7. Daniel R Fake: Hawke's Bay Regional Council, Napier, Hawke's Bay, New Zealand.
  8. Alastair M Suren: Bay of Plenty Regional Council, Tauranga, Bay of Plenty, New Zealand.
  9. Megan R Shaffer: School of Marine and Environmental Affairs, University of Washington, Seattle, WA, United States of America.
  10. Simon N Jarman: School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia.
  11. Michael Bunce: School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia.

Abstract

Global biodiversity is declining at an ever-increasing rate. Yet effective policies to mitigate or reverse these declines require ecosystem condition data that are rarely available. Morphology-based bioassessment methods are difficult to scale, limited in scope, suffer prohibitive costs, require skilled taxonomists, and can be applied inconsistently between practitioners. Environmental DNA (eDNA) metabarcoding offers a powerful, reproducible and scalable solution that can survey across the tree-of-life with relatively low cost and minimal expertise for sample collection. However, there remains a need to condense the complex, multidimensional community information into simple, interpretable metrics of ecological health for environmental management purposes. We developed a riverine taxon-independent community index (TICI) that objectively assigns indicator values to amplicon sequence variants (ASVs), and significantly improves the statistical power and utility of eDNA-based bioassessments. The TICI model training step uses the Chessman iterative learning algorithm to assign health indicator scores to a large number of ASVs that are commonly encountered across a wide geographic range. New sites can then be evaluated for ecological health by averaging the indicator value of the ASVs present at the site. We trained a TICI model on an eDNA dataset from 53 well-studied riverine monitoring sites across New Zealand, each sampled with a high level of biological replication ( = 16). Eight short-amplicon metabarcoding assays were used to generate data from a broad taxonomic range, including bacteria, microeukaryotes, fungi, plants, and animals. Site-specific TICI scores were strongly correlated with historical stream condition scores from macroinvertebrate assessments (macroinvertebrate community index or MCI;  = 0.82), and TICI variation between sample replicates was minimal (CV = 0.013). Taken together, this demonstrates the potential for taxon-independent eDNA analysis to provide a reliable, robust and low-cost assessment of ecological health that is accessible to environmental managers, decision makers, and the wider community.

Keywords

References

  1. Sci Rep. 2020 May 20;10(1):8365 [PMID: 32433472]
  2. Nucleic Acids Res. 2010 Jan;38(Database issue):D46-51 [PMID: 19910366]
  3. Nat Methods. 2016 Jul;13(7):581-3 [PMID: 27214047]
  4. Environ Manage. 2004 Sep;34(3):415-28 [PMID: 15520898]
  5. PLoS One. 2014 Jan 15;9(1):e86175 [PMID: 24454960]
  6. Mol Ecol Resour. 2013 Jul;13(4):607-19 [PMID: 23590277]
  7. Curr Biol. 2019 Oct 7;29(19):R982-R986 [PMID: 31593681]
  8. PeerJ. 2018 Apr 18;6:e4652 [PMID: 29682424]
  9. Science. 2020 Oct 23;370(6515):411-413 [PMID: 33093100]
  10. Sci Total Environ. 2020 Jun 20;722:137900 [PMID: 32199386]
  11. Elife. 2023 Dec 28;12: [PMID: 38153986]
  12. Mol Cell. 2015 May 21;58(4):586-97 [PMID: 26000844]
  13. Mol Ecol. 2019 Apr;28(8):1857-1862 [PMID: 31033079]
  14. Environ Sci Technol. 2014 Aug 19;48(16):9616-23 [PMID: 25055157]
  15. Sci Total Environ. 2023 May 15;873:162322 [PMID: 36801404]
  16. Mol Ecol Resour. 2014 Nov;14(6):1160-70 [PMID: 24751203]
  17. Trends Ecol Evol. 1995 Oct;10(10):430 [PMID: 21237093]
  18. Nucleic Acids Res. 2007;35(3):e14 [PMID: 17169982]
  19. Mol Ecol. 2021 Jul;30(13):2969-2987 [PMID: 32479653]
  20. Nature. 2004 Apr 8;428(6983):640-3 [PMID: 15071592]
  21. Aquat Ecosyst Health Manag. 2020 Feb 27;22(4):440-451 [PMID: 33364913]
  22. Water Res. 2021 Mar 1;191:116767 [PMID: 33418487]
  23. Am Psychol. 2002 Sep;57(9):705-17 [PMID: 12237980]
  24. Mol Ecol. 2021 Jul;30(13):2988-3006 [PMID: 32285497]
  25. Science. 2006 Nov 3;314(5800):787-90 [PMID: 17082450]
  26. Environ Pollut. 2015 Aug;203:165-174 [PMID: 25909325]
  27. PLoS One. 2014 Feb 24;9(2):e89807 [PMID: 24587050]
  28. Nat Ecol Evol. 2023 Jun;7(6):873-888 [PMID: 37188965]
  29. Mol Ecol Resour. 2017 Nov;17(6):1231-1242 [PMID: 28296259]
  30. Mar Environ Res. 2016 Sep;120:225-35 [PMID: 27595900]
  31. PeerJ. 2021 May 31;9:e11556 [PMID: 34131528]
  32. Sci Rep. 2017 Sep 25;7(1):12240 [PMID: 28947818]
  33. J Clin Microbiol. 2006 Oct;44(10):3510-6 [PMID: 17021075]
  34. PLoS One. 2009 Jul 27;4(7):e6372 [PMID: 19633714]
  35. Water Res. 2018 Jul 1;138:192-205 [PMID: 29602086]
  36. Sci Total Environ. 2024 Jan 15;908:168174 [PMID: 37924886]
  37. Nucleic Acids Res. 2014 Jan;42(Database issue):D633-42 [PMID: 24288368]
  38. Proc Natl Acad Sci U S A. 1985 Oct;82(20):6955-9 [PMID: 2413450]
  39. Mol Ecol Notes. 2007 May 1;7(3):355-364 [PMID: 18784790]
  40. Sci Total Environ. 2018 Oct 1;637-638:1295-1310 [PMID: 29801222]
  41. Nucleic Acids Res. 2011 Nov;39(21):e145 [PMID: 21930509]
  42. Am J Primatol. 2007 Jun;69(6):699-705 [PMID: 17216626]
  43. Mol Ecol. 2021 Jul;30(13):2937-2958 [PMID: 32416615]
  44. Mol Ecol Resour. 2021 Aug;21(6):1889-1903 [PMID: 33825307]

MeSH Term

Animals
Ecosystem
DNA, Environmental
DNA Barcoding, Taxonomic
Biodiversity
Rivers

Chemicals

DNA, Environmental

Word Cloud

Created with Highcharts 10.0.0healthcommunityTICIeDNAecologicalindexcanacrosstaxon-independentindicatorASVsscoresrequireconditiondatametabarcodingminimalsampleenvironmentalriverineeDNA-basedmodelrangeNewsitesmacroinvertebrateanalysisassessmentGlobalbiodiversitydecliningever-increasingrateYeteffectivepoliciesmitigatereversedeclinesecosystemrarelyavailableMorphology-basedbioassessmentmethodsdifficultscalelimitedscopesufferprohibitivecostsskilledtaxonomistsappliedinconsistentlypractitionersEnvironmentalDNAofferspowerfulreproduciblescalablesolutionsurveytree-of-liferelativelylowcostexpertisecollectionHoweverremainsneedcondensecomplexmultidimensionalinformationsimpleinterpretablemetricsmanagementpurposesdevelopedobjectivelyassignsvaluesampliconsequencevariantssignificantlyimprovesstatisticalpowerutilitybioassessmentstrainingstepusesChessmaniterativelearningalgorithmassignlargenumbercommonlyencounteredwidegeographicevaluatedaveragingvaluepresentsitetraineddataset53well-studiedmonitoringZealandsampledhighlevelbiologicalreplication = 16Eightshort-ampliconassaysusedgeneratebroadtaxonomicincludingbacteriamicroeukaryotesfungiplantsanimalsSite-specificstronglycorrelatedhistoricalstreamassessmentsMCI = 082variationreplicatesCV=0013Takentogetherdemonstratespotentialprovidereliablerobustlow-costaccessiblemanagersdecisionmakerswiderTICI:BiodiversityBioticEcologicalEcologyTaxon-independent

Similar Articles

Cited By