Thirugnanasambantham Arunkumar, Younghoon Suh, Tushar Prashant Pandit, Anindya Sundar Patra, Sang Joon Lee
Solar desalination provides a sustainable and eco-friendly solution for purifying wastewater, addressing environmental challenges associated with wastewater treatment. This study focuses on the purification of inorganic contaminants from laboratory chemical wastewater (ICWW) using a spherical solar still (SSS). To enhance the evaporation rate and overcome the impact of heavy metals on absorption efficiency, a carbonized balsa wood (CBW) solar evaporator was employed. Balsa wood pieces, carbonized at 250 °C for 15 min, were arranged in a SSS configuration. The CBW-integrated SSS demonstrated a remarkable freshwater productivity of 2.33 L/m for ICWW, surpassing the conventional SSS, which produced only 1.5 L/m. The presence of heavy metal ions (Na, Ca, K, and Mg) in ICWW significantly affected the evaporation rate, and the CBW solar evaporator exhibited an impressive removal efficiency of approximately 99%. Water quality parameters, including pH and chemical oxygen demand (COD), were investigated before and after treatment. The CBW-integrated SSS achieved an outstanding COD removal efficiency of about 99.77%, reducing the COD level from 229.51 to 0.521 mg/L. These results underscore the efficacy of the proposed solar desalination system in purifying ICWW, offering a promising approach to address environmental concerns associated with wastewater treatment.