Carbonized balsa wood-based photothermal evaporator for treating inorganic chemical wastewater.

Thirugnanasambantham Arunkumar, Younghoon Suh, Tushar Prashant Pandit, Anindya Sundar Patra, Sang Joon Lee
Author Information
  1. Thirugnanasambantham Arunkumar: Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Gyeongbuk, Republic of Korea.
  2. Younghoon Suh: Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Gyeongbuk, Republic of Korea.
  3. Tushar Prashant Pandit: Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Gyeongbuk, Republic of Korea.
  4. Anindya Sundar Patra: Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Gyeongbuk, Republic of Korea.
  5. Sang Joon Lee: Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Gyeongbuk, Republic of Korea. sjlee@postech.ac.kr.

Abstract

Solar desalination provides a sustainable and eco-friendly solution for purifying wastewater, addressing environmental challenges associated with wastewater treatment. This study focuses on the purification of inorganic contaminants from laboratory chemical wastewater (ICWW) using a spherical solar still (SSS). To enhance the evaporation rate and overcome the impact of heavy metals on absorption efficiency, a carbonized balsa wood (CBW) solar evaporator was employed. Balsa wood pieces, carbonized at 250 °C for 15 min, were arranged in a SSS configuration. The CBW-integrated SSS demonstrated a remarkable freshwater productivity of 2.33 L/m for ICWW, surpassing the conventional SSS, which produced only 1.5 L/m. The presence of heavy metal ions (Na, Ca, K, and Mg) in ICWW significantly affected the evaporation rate, and the CBW solar evaporator exhibited an impressive removal efficiency of approximately 99%. Water quality parameters, including pH and chemical oxygen demand (COD), were investigated before and after treatment. The CBW-integrated SSS achieved an outstanding COD removal efficiency of about 99.77%, reducing the COD level from 229.51 to 0.521 mg/L. These results underscore the efficacy of the proposed solar desalination system in purifying ICWW, offering a promising approach to address environmental concerns associated with wastewater treatment.

Keywords

References

  1. Abdullah AS, Omara ZM, Essa FA, Younes MM, Shanmugan S, Abdelgaied M, Amro MI, Kabeel AE, Farouk WM (2021) Improving the performance of trays solar still using wick corrugated absorber, nano-enhanced phase change material and photovoltaics-powered heaters. J Energy Storage 40:102782 [DOI: 10.1016/j.est.2021.102782]
  2. Arunkumar T, Jayaprakash R, Denkenberger D, Ahsan A, Okundamiya MS, Kumar S, Tanaka H, Aybar HŞ (2012) An experimental study on a hemispherical solar still. Desalination 286:342–348 [DOI: 10.1016/j.desal.2011.11.047]
  3. Arunkumar T, Sathyamurthy R, Denkenberger D, Lee SJ (2022) Solar distillation meets the real world: a review of solar stills purifying real wastewater and seawater. Environ Sci Pollut Res 29:22860–22884 [DOI: 10.1007/s11356-022-18720-2]
  4. Arunkumar T, Lim HW, Wilson HM, Suh Y, Lee SJ (2023a) Optimization of bamboo-based photothermal interfacial solar evaporator for enhancing water purification. Environ Sci Pollut Res Int 30:67686–67698 [DOI: 10.1007/s11356-023-27150-7]
  5. Arunkumar T, Wilson HM, Lim HW, Hameed AZ, Lee SJ (2023b) Peanut shell-derived photothermal absorber for solar desalination. Desalination 565:116901 [DOI: 10.1016/j.desal.2023.116901]
  6. Aya Gamal Saad AG, Kospa DA, El-Hakam SA, Ibrahim AA (2022) Integrated solar seawater desalination and power generation via plasmonic sawdust-derived biochar: waste to wealth. Desalination 535:115824 [DOI: 10.1016/j.desal.2022.115824]
  7. Bai S, Wang T, Tian Z, Cao K, Li J (2020) Facile preparation of porous biomass charcoal from peanut shell as adsorbent. Sci Rep 10:15845 [DOI: 10.1038/s41598-020-72721-0]
  8. Bolisetty S, Peydayesh M, Mezzenga R (2019) Sustainable technologies for water purification from heavy metals: review and analysis. Chem Soc Rev 48:463–487 [DOI: 10.1039/C8CS00493E]
  9. Chen C, Li Y, Song J, Yang Z, Kuang Y, Hitz E, Jia C, Gong A, Jiang F, Zhu JY, Yang B, Xie J, Hu L (2017) Highly flexible and efficient solar steam generation device. Adv Mater 29:1701756 [DOI: 10.1002/adma.201701756]
  10. Collivignarelli MC, Miino MC, Baldi M, Manzi S, Abbà A, Bertanza G (2019) Removal of non-ionic and anionic surfactants from real laundry wastewater by means of a full-scale treatment system. Process Saf Environ Prot 132:105–115 [DOI: 10.1016/j.psep.2019.10.022]
  11. da Cunha TT, Silva IF, do Pim WD, Binatti I, do Nascimento GM, Stumpf HO, Santana GC, Oliveira LCA, Pereira CLM (2019) Multifunctional Nb–Cu nanostructured materials as potential adsorbents and oxidation catalysts for real wastewater decontamination. New J Chem 43:9134–9144 [DOI: 10.1039/C9NJ01427F]
  12. Ge Y, Su Z, Ivan M, Wang C, Tsang YH, Xu S, Bai G (2022) Bio-derived photothermal materials and evaporators for sustainable solar energy-driven water process. Langmuir 38:13187–13194 [DOI: 10.1021/acs.langmuir.2c02063]
  13. George N, Narayanankutty SK (2016) Isolation and characterization of cellulose nanofibrils from arecanut husk fibre. Carbohydr Polym 142:158–166 [DOI: 10.1016/j.carbpol.2016.01.015]
  14. Ge-Zhang S, Yang H, Mu H (2023) Interfacial solar steam generator by MWCNTs/carbon black nanoparticles coated wood. Alex Eng J 63:1–10 [DOI: 10.1016/j.aej.2022.08.002]
  15. Ghorbani M, Salem S (2021) Solar treatment of sewage discharged from industrial estate for reduction of chemical oxygen demand over Degussa P-25 titania. Chemosphere 265:129123 [DOI: 10.1016/j.chemosphere.2020.129123]
  16. Gong B, Yang H, Wu S, Tian Y, Guo X, Xu C, Kuang W, Yan J, Cen K, Bo Z, Ostrikov K (2021) Multifunctional solar bamboo straw: Multiscale 3D membrane for self-sustained solar-thermal water desalination and purification and thermoelectric waste heat recovery and storage. Carbon 171:359–367 [DOI: 10.1016/j.carbon.2020.09.033]
  17. Gricius Z, Oye G (2023) Recent advances in the design and use of pickering emulsions for wastewater treatment applications. Soft Matter Soft 19:818–840 [DOI: 10.1039/D2SM01437H]
  18. He S, Chen C, Kuang Y, Mi R, Liu Y, Pei Y, Kong W, Gan W, Xie H, Hitz E, Jia C, Chen X, Gong A, Liao J, Li J, Ren ZJ, Yang B, Das S, Hu L (2019) Nature-inspired salt resistant bimodal porous solar evaporator for efficient and stable water desalination. Energy Environ Sci 12:1558–1567 [DOI: 10.1039/C9EE00945K]
  19. Kovo AS, Alaya-Ibrahim S, Abdulkareem AS, Adeniyi OD, Egbosiuba TC, Tijani JO, Saheed M, Okafor BO, Adeyinka YS (2023) Column adsorption of biological oxygen demand, chemical oxygen demand and total organic carbon from wastewater by magnetite nanoparticles-zeolite A composite. Heliyon 9:e13095 [DOI: 10.1016/j.heliyon.2023.e13095]
  20. Li W, Li X, Liu J, Zeng MJ, Feng X, Jia X, Yu ZZ (2021) Coating of wood with Fe(2)O(3)-decorated carbon nanotubes by one-step combustion for efficient solar steam generation. ACS Appl Mater Interfaces 13:22845–22854 [DOI: 10.1021/acsami.1c03388]
  21. Li J, Jing Y, Xing G, Liu M, Cui Y, Sun H, Zhu Z, Liang W, Li A (2022) Solar-driven interfacial evaporation for water treatment: advanced research progress and challenges. J Mater Chem A 10:18470–18489 [DOI: 10.1039/D2TA03321F]
  22. Long Y, Huang S, Yi H, Chen J, Wu J, Liao Q, Liang H, Cui H, Ruan S, Zeng Y-J (2019) Carrot-inspired solar thermal evaporator. J Mater Chem A 7:26911–26916 [DOI: 10.1039/C9TA08754K]
  23. Luna-Lama F, Morales J, Caballero A (2021) Biomass porous carbons derived from banana peel waste as sustainable anodes for lithium-ion batteries. Materials (Basel) 14:5995 [DOI: 10.3390/ma14205995]
  24. Mastoras P, Vakalis S, Fountoulakis MS, Gatidou G, Katsianou P, Koulis G, Thomaidis NS, Haralambopoulos D, Stasinakis AS (2022) Evaluation of the performance of a pilot-scale solar still for olive mill wastewater treatment. J Clean Prod 365:132695 [DOI: 10.1016/j.jclepro.2022.132695]
  25. Mittal H, Al Alili A, Alhassan SM, Naushad M (2022) Advances in the role of natural gums-based hydrogels in water purification, desalination and atmospheric-water harvesting. Int J Biol Macromol 222:2888–2921 [DOI: 10.1016/j.ijbiomac.2022.10.067]
  26. Muhammad Ahmad SL, Mahmood N, Mahmood A, Ali M, Zheng M, Ni J (2017) Synergic adsorption–biodegradation by an advanced carrier for enhanced removal of high-strength nitrogen and refractory organics. ACS Appl Mater Interfaces 9:13188–13200 [DOI: 10.1021/acsami.7b01251]
  27. Natarajan SK, Suraparaju SK, Elavarasan RM, Pugazhendhi R, Hossain E (2022) An experimental study on eco-friendly and cost-effective natural materials for productivity enhancement of single slope solar still. Environ Sci Pollut Res Int 29:1917–1936 [DOI: 10.1007/s11356-021-15764-8]
  28. Sheng C, Yang N, Yan Y, Shen X, Jin C, Wang Z, Sun Q (2020) Bamboo decorated with plasmonic nanoparticles for efficient solar steam generation. Appl Thermal Eng 167:114712 [DOI: 10.1016/j.applthermaleng.2019.114712]
  29. Sun H, Li Y, Li J, Zhu Z, Zhang W, Liang W, Ma C, Li A (2021) Facile preparation of a carbon-based hybrid film for efficient solar-driven interfacial water evaporation. ACS Appl Mater Interfaces 13:33427–33436 [DOI: 10.1021/acsami.1c06226]
  30. Suraparaju SK, Natarajan SK (2022) Effect of natural sisal fibre on enhancing the condensation rate of solar still for sustainable clean water production. Thermal Sci Eng Prog 36:101527 [DOI: 10.1016/j.tsep.2022.101527]
  31. Wang Z, Yan Y, Shen X, Sun Q, Jin C (2020) Candle soot nanoparticle-decorated wood for efficient solar vapor generation. Sustain Energy Fuels 4:354–361 [DOI: 10.1039/C9SE00617F]
  32. Wang M, He W, Hua Y, Xie X, Chen S, Zhou L, Zhang Y, Hou Y, Lin S, Xia H, Zheng J, Hou X (2022) Alternative photothermal/electrothermal hierarchical membrane for hypersaline water treatment. SusMat 2:679–688 [DOI: 10.1002/sus2.96]
  33. Zarasvand Asadi R, Suja F, Ruslan MH, NaA J (2013) The application of a solar still in domestic and industrial wastewater treatment. Sol Energy 93:63–71 [DOI: 10.1016/j.solener.2013.03.024]
  34. Zhu M, Yu J, Ma C, Zhang C, Wu D, Zhu H (2019) Carbonized daikon for high efficient solar steam generation. Sol Energy Mater Sol Cells 191:83–90 [DOI: 10.1016/j.solmat.2018.11.015]

Grants

  1. NRF-2022H1D3A2A0109648911/National Research Foundation of Korea

Word Cloud

Created with Highcharts 10.0.0wastewaterSSSICWWsolartreatmentchemicalefficiencybalsawoodevaporatorCODdesalinationpurifyingenvironmentalassociatedinorganicevaporationrateheavymetalscarbonizedCBWCBW-integratedL/mremovalWaterqualityCarbonizedSolarprovidessustainableeco-friendlysolutionaddressingchallengesstudyfocusespurificationcontaminantslaboratoryusingsphericalstillenhanceovercomeimpactabsorptionemployedBalsapieces250°C15minarrangedconfigurationdemonstratedremarkablefreshwaterproductivity233surpassingconventionalproduced15presencemetalionsNaCaKMgsignificantlyaffectedexhibitedimpressiveapproximately99%parametersincludingpHoxygendemandinvestigatedachievedoutstanding9977%reducinglevel229510521mg/Lresultsunderscoreefficacyproposedsystemofferingpromisingapproachaddressconcernswood-basedphotothermaltreatingDesalinationFreshwaterHeavyWastewater

Similar Articles

Cited By

No available data.