Estimating quality-adjusted life expectancy (QALE) for local authorities in Great Britain and its association with indicators of the inclusive economy: a cross-sectional study.

Andreas Höhn, Nik Lomax, Hugh Rice, Colin Angus, Alan Brennan, Denise Brown, Anne Cunningham, Corinna Elsenbroich, Ceri Hughes, Srinivasa Vittal Katikireddi, Gerry McCartney, Rosie Seaman, Aki Tsuchia, Petra Meier
Author Information
  1. Andreas Höhn: MRC/CSO Social and Public Health Sciences Unit, University of Glasgow, Glasgow, UK andreas.hoehn@glasgow.ac.uk. ORCID
  2. Nik Lomax: School of Geography, University of Leeds, Leeds, UK. ORCID
  3. Hugh Rice: School of Geography, University of Leeds, Leeds, UK. ORCID
  4. Colin Angus: School of Medicine and Population Health, University of Sheffield, Sheffield, UK. ORCID
  5. Alan Brennan: School of Medicine and Population Health, University of Sheffield, Sheffield, UK. ORCID
  6. Denise Brown: MRC/CSO Social and Public Health Sciences Unit, University of Glasgow, Glasgow, UK. ORCID
  7. Anne Cunningham: School of Medicine and Population Health, University of Sheffield, Sheffield, UK. ORCID
  8. Corinna Elsenbroich: MRC/CSO Social and Public Health Sciences Unit, University of Glasgow, Glasgow, UK. ORCID
  9. Ceri Hughes: Manchester Institute of Education, The University of Manchester, Manchester, UK. ORCID
  10. Srinivasa Vittal Katikireddi: MRC/CSO Social and Public Health Sciences Unit, University of Glasgow, Glasgow, UK. ORCID
  11. Gerry McCartney: School of Social and Political Sciences, University of Glasgow, Glasgow, UK. ORCID
  12. Rosie Seaman: MRC/CSO Social and Public Health Sciences Unit, University of Glasgow, Glasgow, UK. ORCID
  13. Aki Tsuchia: School of Medicine and Population Health, University of Sheffield, Sheffield, UK. ORCID
  14. Petra Meier: MRC/CSO Social and Public Health Sciences Unit, University of Glasgow, Glasgow, UK. ORCID

Abstract

OBJECTIVES: Quantifying area-level inequalities in population health can help to inform policy responses. We describe an approach for estimating quality-adjusted life expectancy (QALE), a comprehensive health expectancy measure, for local authorities (LAs) in Great Britain (GB). To identify potential factors accounting for LA-level QALE inequalities, we examined the association between inclusive economy indicators and QALE.
SETTING: 361/363 LAs in GB (lower tier/district level) within the period 2018-2020.
DATA AND METHODS: We estimated life tables for LAs using official statistics and utility scores from an area-level linkage of the Understanding Society survey. Using the Sullivan method, we estimated QALE at birth in years with corresponding 80% CIs. To examine the association between inclusive economy indicators and QALE, we used an open access data set operationalising the inclusive economy, created by the System Science in Public Health and Health Economics Research consortium.
RESULTS: Population-weighted QALE estimates across LAs in GB were lowest in Scotland (females/males: 65.1 years/64.9 years) and Wales (65.0 years/65.2 years), while they were highest in England (67.5 years/67.6 years). The range across LAs for females was from 56.3 years (80% CI 45.6 to 67.1) in Mansfield to 77.7 years (80% CI 65.11 to 90.2) in Runnymede. QALE for males ranged from 57.5 years (80% CI 40.2 to 74.7) in Merthyr Tydfil to 77.2 years (80% CI 65.4 to 89.1) in Runnymede. Indicators of the inclusive economy accounted for more than half of the variation in QALE at the LA level (adjusted R females/males: 50%/57%). Although more inclusivity was generally associated with higher levels of QALE at the LA level, this association was not consistent across all 13 inclusive economy indicators.
CONCLUSIONS: QALE can be estimated for LAs in GB, enabling further research into area-level health inequalities. The associations we identified between inclusive economy indicators and QALE highlight potential policy priorities for improving population health and reducing health inequalities.

Keywords

References

  1. J Epidemiol Community Health. 2022 Jun 6;: [PMID: 35667853]
  2. Popul Stud (Camb). 2021 Dec;75(sup1):105-132 [PMID: 34902283]
  3. Popul Stud (Camb). 2006 Nov;60(3):257-69 [PMID: 17060053]
  4. J Epidemiol Community Health. 2023 Sep;77(9):610-616 [PMID: 37328262]
  5. Br Med Bull. 2010;96:5-21 [PMID: 21037243]
  6. Milbank Q. 2005;83(4):731-57 [PMID: 16279965]
  7. Health Qual Life Outcomes. 2003 Dec 19;1:80 [PMID: 14687421]
  8. Value Health. 2022 May;25(5):731-735 [PMID: 35500946]
  9. Child Abuse Negl. 2020 Apr;102:104418 [PMID: 32088537]
  10. Value Health. 2017 Jan;20(1):174-177 [PMID: 28212959]
  11. Value Health. 2023 Feb;26(2):163-169 [PMID: 35965226]
  12. Med Care. 2004 Sep;42(9):851-9 [PMID: 15319610]
  13. J Epidemiol Community Health. 2021 Nov;75(11):1129-1132 [PMID: 34158408]
  14. Med Decis Making. 2004 Mar-Apr;24(2):160-9 [PMID: 15090102]
  15. Dtsch Arztebl Int. 2020 Jul 20;117(29-30):493-499 [PMID: 33087229]
  16. Popul Res Policy Rev. 2022;41(3):865-898 [PMID: 34421158]
  17. J Epidemiol Community Health. 2021 Aug;75(8):735-740 [PMID: 33468602]
  18. Scand J Public Health. 2007;35(5):510-5 [PMID: 17852988]
  19. J Epidemiol Community Health. 2004 Mar;58(3):243-9 [PMID: 14966240]
  20. Soc Sci Med. 2019 May;228:41-50 [PMID: 30875543]
  21. Value Health. 2015 Jul;18(5):655-62 [PMID: 26297094]
  22. Annu Rev Public Health. 2002;23:115-34 [PMID: 11910057]
  23. Lancet Public Health. 2021 Nov;6(11):e783-e784 [PMID: 34653418]
  24. BMJ Open. 2020 Jul 22;10(7):e035932 [PMID: 32699164]
  25. Med Decis Making. 2011 Nov-Dec;31(6):800-4 [PMID: 21422468]
  26. J Prev Med Public Health. 2022 Jan;55(1):1-9 [PMID: 35135043]
  27. J Epidemiol Community Health. 2022 Dec;76(12):1027-1033 [PMID: 36195463]
  28. Eur J Epidemiol. 2023 May;38(5):511-521 [PMID: 37027116]
  29. Wellcome Open Res. 2019 Nov 12;4:174 [PMID: 31815191]
  30. Int J Epidemiol. 2015 Oct;44(5):1549-56 [PMID: 26108436]
  31. Proc Natl Acad Sci U S A. 2021 Nov 16;118(46): [PMID: 34772817]
  32. Demography. 2023 Dec 1;60(6):1675-1688 [PMID: 37975571]
  33. Value Health. 2013 Jun;16(4):599-603 [PMID: 23796294]
  34. HSMHA Health Rep. 1971 Apr;86(4):347-54 [PMID: 5554262]
  35. Pharmacoeconomics. 2009;27(6):491-505 [PMID: 19640012]
  36. Value Health. 2013 Jan-Feb;16(1):140-7 [PMID: 23337225]
  37. Sci Data. 2022 Jan 20;9(1):19 [PMID: 35058471]

Grants

  1. /Wellcome Trust

MeSH Term

Male
Infant, Newborn
Female
Humans
United Kingdom
Cross-Sectional Studies
Quality of Life
Life Expectancy
Health Status
Quality-Adjusted Life Years

Word Cloud

Created with Highcharts 10.0.0QALEhealthyearsinclusiveLAseconomyindicatorsinequalitieslifeGBassociation80%652area-levelexpectancylevelestimatedacross1CIpopulationcanpolicyquality-adjustedlocalauthoritiesGreatBritainpotentialstatisticsHealthfemales/males:6756777RunnymedeLAresearchOBJECTIVES:QuantifyinghelpinformresponsesdescribeapproachestimatingcomprehensivemeasureidentifyfactorsaccountingLA-levelexaminedSETTING:361/363lowertier/districtwithinperiod2018-2020DATAANDMETHODS:tablesusingofficialutilityscoreslinkageUnderstandingSocietysurveyUsingSullivanmethodbirthcorrespondingCIsexamineusedopenaccessdatasetoperationalisingcreatedSystemSciencePublicEconomicsResearchconsortiumRESULTS:Population-weightedestimateslowestScotlandyears/649Wales0years/65highestEnglandyears/67rangefemales56380% CI45Mansfield1190malesranged574074MerthyrTydfil489IndicatorsaccountedhalfvariationadjustedR50%/57%Althoughinclusivitygenerallyassociatedhigherlevelsconsistent13CONCLUSIONS:enablingassociationsidentifiedhighlightprioritiesimprovingreducingEstimatingeconomy:cross-sectionalstudydecisionmakingeconomicsequitypublicquality&methods

Similar Articles

Cited By