The use of environmental data in descriptive and predictive models of vector-borne disease in North America.

Hanna D Kiryluk, Charles B Beard, Karen M Holcomb
Author Information
  1. Hanna D Kiryluk: Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, USA. ORCID
  2. Charles B Beard: Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, USA. ORCID
  3. Karen M Holcomb: Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521, USA. ORCID

Abstract

Vector-borne disease incidence and burden are on the rise. Weather events and climate patterns are known to influence vector populations and disease distribution and incidence. Changes in weather trends and climatic factors can shift seasonal vector activity and host behavior, thus altering pathogen distribution and introducing diseases to new geographic regions. With the upward trend in global temperature, changes in the incidence and distribution of disease vectors possibly linked to climate change have been documented. Forecasting and modeling efforts are valuable for incorporating climate into predicting changes in vector and Vector-borne disease distribution. These predictions serve to optimize disease outbreak preparedness and response. The purpose of this scoping review was to describe the use of climate data in Vector-borne disease prediction in North America between 2000 and 2022. The most investigated diseases were West Nile virus infection, Lyme disease, and dengue. The uneven geographical distribution of publications could suggest regional differences in the availability of surveillance data required for Vector-borne disease predictions and forecasts across the United States, Canada, and Mexico. Studies incorporated environmental data from ground-based sources, satellite data, previously existing data, and field-collected data. While environmental data such as meteorological and topographic factors were well-represented, further research is warranted to ascertain if relationships with less common variables, such as oceanographic characteristics and drought, hold among various vector populations and throughout wider geographical areas. This review provides a catalogue of recently used climatic data that can inform future assessments of the value of such data in Vector-borne disease models.

Keywords

References

  1. Bull World Health Organ. 1956;15(3-5):369-87 [PMID: 13404426]
  2. Trends Parasitol. 2016 Aug;32(8):646-656 [PMID: 27260548]
  3. Emerg Infect Dis. 2021 Feb;27(2):616-619 [PMID: 33496229]
  4. Annu Rev Entomol. 2005;50:505-28 [PMID: 15471529]
  5. Geohealth. 2023 Nov 17;7(11):e2023GH000906 [PMID: 38023388]
  6. Front Physiol. 2012 Mar 27;3:64 [PMID: 22470348]
  7. Infect Dis Poverty. 2019 Jun 13;8(1):51 [PMID: 31196187]
  8. J Med Entomol. 2019 Sep 3;56(5):1183-1187 [PMID: 31505669]
  9. Ticks Tick Borne Dis. 2016 Oct;7(6):1067-1074 [PMID: 27665265]
  10. MMWR Morb Mortal Wkly Rep. 2018 May 04;67(17):496-501 [PMID: 29723166]
  11. Acta Trop. 2017 Aug;172:50-57 [PMID: 28450208]
  12. Emerg Infect Dis. 2001 Jul-Aug;7(4):726-9 [PMID: 11585538]
  13. J Ethnobiol Ethnomed. 2021 Jul 21;17(1):45 [PMID: 34289861]
  14. J Med Entomol. 2001 Sep;38(5):646-56 [PMID: 11580037]
  15. Mem Inst Oswaldo Cruz. 2022 Jul 06;117:e210130 [PMID: 35830010]
  16. Int J Environ Res Public Health. 2018 Mar 09;15(3): [PMID: 29522469]
  17. Am J Trop Med Hyg. 2010 Nov;83(5):1137-45 [PMID: 21036853]
  18. PLoS Negl Trop Dis. 2021 Sep 9;15(9):e0009653 [PMID: 34499656]
  19. Parasit Vectors. 2023 Jan 12;16(1):11 [PMID: 36635782]
  20. Nat Immunol. 2020 May;21(5):479-483 [PMID: 32313242]
  21. Proc Natl Acad Sci U S A. 2019 Nov 26;116(48):24268-24274 [PMID: 31712420]
  22. Can Commun Dis Rep. 2019 Apr 04;45(4):91-97 [PMID: 31285698]
  23. J Med Entomol. 2004 Jul;41(4):622-33 [PMID: 15311453]
  24. PLoS Negl Trop Dis. 2014 Mar 27;8(3):e2763 [PMID: 24676038]
  25. J Med Entomol. 2019 Sep 3;56(5):1199-1203 [PMID: 31505668]
  26. Vector Borne Zoonotic Dis. 2022 Aug;22(8):425-442 [PMID: 35867036]
  27. Ecol Appl. 2008 Dec;18(8):2028-40 [PMID: 19263895]
  28. Sci Data. 2018 Nov 06;5:180246 [PMID: 30398475]
  29. PLoS One. 2020 Jan 15;15(1):e0227678 [PMID: 31940405]
  30. Eur J Epidemiol. 2004;19(8):811-7 [PMID: 15469039]
  31. J Med Entomol. 2021 Jul 16;58(4):1536-1545 [PMID: 33112403]
  32. J R Soc Interface. 2012 Oct 7;9(75):2708-17 [PMID: 22535696]
  33. PLoS One. 2023 May 5;18(5):e0285215 [PMID: 37146010]
  34. J Med Entomol. 2020 Sep 7;57(5):1604-1613 [PMID: 32436566]
  35. Vet Sci. 2018 Sep 21;5(4): [PMID: 30248931]
  36. Am J Public Health. 1991 Nov;81(11):1448-55 [PMID: 1951802]
  37. Elife. 2020 Sep 15;9: [PMID: 32930091]

MeSH Term

Vector Borne Diseases
North America
Climate Change
Animals
Humans
Models, Biological
Forecasting

Word Cloud

Created with Highcharts 10.0.0diseasedatavector-borneclimatedistributionvectorincidenceNorthAmericaenvironmentalpopulationsclimaticfactorscandiseaseschangesmodelingpredictionsreviewusegeographicalmodelsVector-borneburdenriseWeathereventspatternsknowninfluenceChangesweathertrendsshiftseasonalactivityhostbehaviorthusalteringpathogenintroducingnewgeographicregionsupwardtrendglobaltemperaturevectorspossiblylinkedchangedocumentedForecastingeffortsvaluableincorporatingpredictingserveoptimizeoutbreakpreparednessresponsepurposescopingdescribeprediction20002022investigatedWestNilevirusinfectionLymedengueunevenpublicationssuggestregionaldifferencesavailabilitysurveillancerequiredforecastsacrossUnitedStatesCanadaMexicoStudiesincorporatedground-basedsourcessatellitepreviouslyexistingfield-collectedmeteorologicaltopographicwell-representedresearchwarrantedascertainrelationshipslesscommonvariablesoceanographiccharacteristicsdroughtholdamongvariousthroughoutwiderareasprovidescataloguerecentlyusedinformfutureassessmentsvaluedescriptivepredictiveforecasting

Similar Articles

Cited By (1)