Automated workflow for characterization of bacteriocin production in natural producers Lactococcus lactis and Latilactobacillus sakei.

Valentin Steier, Lisa Prigolovkin, Alexander Reiter, Tobias Neddermann, Wolfgang Wiechert, Sebastian J Reich, Christian U Riedel, Marco Oldiges
Author Information
  1. Valentin Steier: Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany.
  2. Lisa Prigolovkin: Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany.
  3. Alexander Reiter: Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany.
  4. Tobias Neddermann: NovaTaste Production GmbH, Holdorf, Germany.
  5. Wolfgang Wiechert: Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany.
  6. Sebastian J Reich: Department of Biology, Ulm University, Ulm, Germany.
  7. Christian U Riedel: Department of Biology, Ulm University, Ulm, Germany.
  8. Marco Oldiges: Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany. m.oldiges@fz-juelich.de.

Abstract

BACKGROUND: Lactic acid bacteria are commonly used as protective starter cultures in food products. Among their beneficial effects is the production of ribosomally synthesized peptides termed bacteriocins that kill or inhibit food-spoiling bacteria and pathogens, e.g., members of the Listeria species. As new bacteriocins and producer strains are being discovered rapidly, modern automated methods for strain evaluation and bioprocess development are required to accelerate screening and development processes.
RESULTS: In this study, we developed an automated workflow for screening and bioprocess optimization for bacteriocin producing lactic acid bacteria, consisting of microcultivation, sample processing and automated antimicrobial activity assay. We implemented sample processing workflows to minimize bacteriocin adsorption to producer cells via addition of Tween 80 and divalent cations to the cultivation media as well as acidification of culture broth prior to cell separation. Moreover, we demonstrated the applicability of the automated workflow to analyze influence of media components such as MES buffer or yeast extract for bacteriocin producers Lactococcus lactis B1629 and Latilactobacillus sakei A1608.
CONCLUSIONS: Our automated workflow provides advanced possibilities to accelerate screening and bioprocess optimization for natural bacteriocin producers. Based on its modular concept, adaptations for other strains, bacteriocin products and applications are easily carried out and a unique tool to support bacteriocin research and bioprocess development is provided.

Keywords

References

  1. Foods. 2023 Apr 05;12(7): [PMID: 37048362]
  2. Foods. 2021 May 06;10(5): [PMID: 34066353]
  3. Eng Life Sci. 2022 Mar 01;22(3-4):242-259 [PMID: 35382539]
  4. FEMS Microbiol Lett. 1995 Jun 1;129(1):1-10 [PMID: 7781983]
  5. Biotechnol J. 2018 Apr;13(4):e1700141 [PMID: 29283217]
  6. Braz J Microbiol. 2019 Oct;50(4):915-925 [PMID: 31385286]
  7. J Microbiol Methods. 2005 Jul;62(1):121-4 [PMID: 15823400]
  8. Appl Microbiol Biotechnol. 2017 Feb;101(4):1323-1335 [PMID: 28070665]
  9. Int J Food Microbiol. 2006 Feb 15;106(3):270-85 [PMID: 16213053]
  10. Nat Rev Microbiol. 2005 Oct;3(10):777-88 [PMID: 16205711]
  11. Microbiologyopen. 2022 Aug;11(4):e1304 [PMID: 36031957]
  12. Appl Microbiol Biotechnol. 2000 Feb;53(2):159-66 [PMID: 10709977]
  13. Front Microbiol. 2024 Jan 08;14:1254882 [PMID: 38260893]
  14. Antibiotics (Basel). 2020 Aug 06;9(8): [PMID: 32781540]
  15. Appl Microbiol Biotechnol. 1996 Mar;45(1-2):36-40 [PMID: 8920177]
  16. Int J Food Microbiol. 2007 Nov 30;120(1-2):51-70 [PMID: 17614151]
  17. J Biotechnol. 2002 Jan 31;93(1):27-34 [PMID: 11690692]
  18. Int J Food Microbiol. 2011 Mar 30;146(2):192-9 [PMID: 21411169]
  19. Microb Cell Fact. 2022 Jan 15;21(1):11 [PMID: 35033086]
  20. Arch Microbiol. 1977 Nov 18;115(2):169-73 [PMID: 23086]
  21. Eur J Biochem. 1991 Nov 1;201(3):581-4 [PMID: 1935953]
  22. J Pharm Anal. 2016 Apr;6(2):71-79 [PMID: 29403965]
  23. J Appl Microbiol. 2016 Jun;120(6):1449-65 [PMID: 26678028]
  24. J Gen Microbiol. 1992 Dec;138(12):2715-20 [PMID: 1487735]
  25. Appl Environ Microbiol. 1992 Oct;58(10):3355-9 [PMID: 1444369]
  26. Microb Cell Fact. 2022 Nov 11;21(1):236 [PMID: 36368990]
  27. J Gen Microbiol. 1992 Mar;138(3):571-8 [PMID: 1593266]
  28. J Appl Microbiol. 2000 Mar;88(3):536-45 [PMID: 10747235]
  29. Appl Environ Microbiol. 2009 Feb;75(4):1080-7 [PMID: 19074601]
  30. Front Microbiol. 2018 Dec 11;9:3038 [PMID: 30619129]
  31. FEMS Microbiol Lett. 1998 Nov 1;168(1):137-43 [PMID: 9812374]
  32. Biotechnol J. 2019 Sep;14(9):e1800428 [PMID: 30318833]
  33. Methods Enzymol. 2009;463:603-17 [PMID: 19892194]
  34. Lett Appl Microbiol. 1996 Apr;22(4):307-10 [PMID: 8934792]
  35. Biotechnol Lett. 2005 Nov;27(21):1641-8 [PMID: 16247668]
  36. Int J Food Microbiol. 2000 Apr 10;55(1-3):181-6 [PMID: 10791741]
  37. Int J Food Microbiol. 2007 Jan 1;113(1):1-15 [PMID: 17010463]

Grants

  1. 031B0826C/Bundesministerium für Bildung und Forschung
  2. 031B0826A/Bundesministerium für Bildung und Forschung
  3. 031B0826C/Bundesministerium für Bildung und Forschung

MeSH Term

Lactococcus lactis
Latilactobacillus sakei
Workflow
Adsorption
Bacteriocins
Lactobacillales

Chemicals

Bacteriocins

Word Cloud

Created with Highcharts 10.0.0bacteriocinautomatedbioprocessworkflowbacteriadevelopmentscreeningproducerslactissakeiacidproductsproductionbacteriocinsproducerstrainsaccelerateoptimizationsampleprocessingmediaLactococcusLatilactobacillusnaturalLBACKGROUND:LacticcommonlyusedprotectivestarterculturesfoodAmongbeneficialeffectsribosomallysynthesizedpeptidestermedkillinhibitfood-spoilingpathogensegmembersListeriaspeciesnewdiscoveredrapidlymodernmethodsstrainevaluationrequiredprocessesRESULTS:studydevelopedproducinglacticconsistingmicrocultivationantimicrobialactivityassayimplementedworkflowsminimizeadsorptioncellsviaadditionTween80divalentcationscultivationwellacidificationculturebrothpriorcellseparationMoreoverdemonstratedapplicabilityanalyzeinfluencecomponentsMESbufferyeastextractB1629A1608CONCLUSIONS:providesadvancedpossibilitiesBasedmodularconceptadaptationsapplicationseasilycarrieduniquetoolsupportresearchprovidedAutomatedcharacterizationBacteriocinsLaboratoryautomationMicrocultivation

Similar Articles

Cited By (1)