The operon is a marker of C4-alkylated monobactam biosynthesis and responsible for (,)-diaminobutyrate production.

Rongfeng Li, Michael S Lichstrahl, Trevor A Zandi, Lukas Kahlert, Craig A Townsend
Author Information
  1. Rongfeng Li: Department of Chemistry, The Johns Hopkins University, 3400 N Charles St, Baltimore, MD, USA.
  2. Michael S Lichstrahl: Department of Chemistry, The Johns Hopkins University, 3400 N Charles St, Baltimore, MD, USA.
  3. Trevor A Zandi: T. C. Jenkins Department of Biophysics, The Johns Hopkins University, Baltimore, MD, USA.
  4. Lukas Kahlert: Department of Chemistry, The Johns Hopkins University, 3400 N Charles St, Baltimore, MD, USA.
  5. Craig A Townsend: Department of Chemistry, The Johns Hopkins University, 3400 N Charles St, Baltimore, MD, USA.

Abstract

Non-ribosomal peptide synthetases (NRPSs) assemble metabolites of medicinal and commercial value. Both serine and threonine figure prominently in these processes and separately can be converted to the additional NRPS building blocks 2,3-diaminopropionate (Dap) and 2,3-diaminobutyrate (Dab). Here we bring extensive bioinformatics, and experimentation to compose a unified view of the biosynthesis of these widely distributed non-canonical amino acids that both derive by pyridoxal-mediated β-elimination of the activated -phosphorylated substrates followed by β-addition of an amine donor. By examining monobactam biosynthesis in and in species where it is silent, we show that (2,3)-Dab synthesis depends on an l-threonine kinase (DabA), a β-replacement reaction with l-aspartate (DabB) and an argininosuccinate lyase-like protein (DabC). The growing clinical importance of monobactams to both withstand Ambler Class B metallo-β-lactamases and retain their antibiotic activity make reprogrammed precursor and NRPS synthesis of modified monobactams a feasible and attractive goal.

Keywords

References

  1. Bioorg Med Chem Lett. 2018 Feb 15;28(4):748-755 [PMID: 29336873]
  2. Biochemistry. 2004 Nov 23;43(46):14594-601 [PMID: 15544330]
  3. J Bacteriol. 2020 Jun 9;202(13): [PMID: 32312745]
  4. J Biol Chem. 2009 Jul 24;284(30):20240-8 [PMID: 19509296]
  5. Chem Rev. 1999 May 12;99(5):1191-224 [PMID: 11749444]
  6. Proc Natl Acad Sci U S A. 2017 Apr 4;114(14):E2920-E2928 [PMID: 28320949]
  7. Appl Environ Microbiol. 2021 Aug 26;87(18):e0064721 [PMID: 34190606]
  8. Biochemistry. 2018 Jun 19;57(24):3353-3358 [PMID: 29701951]
  9. J Am Chem Soc. 2013 Sep 4;135(35):12964-7 [PMID: 23964983]
  10. ACS Med Chem Lett. 2023 Apr 24;14(5):557-565 [PMID: 37197469]
  11. Anal Chem. 2007 Jan 15;79(2):673-81 [PMID: 17222036]
  12. J Bacteriol. 1984 May;158(2):580-9 [PMID: 6327612]
  13. Chem Biol. 2014 Mar 20;21(3):379-88 [PMID: 24485762]
  14. Org Lett. 2007 Sep 27;9(20):3881-4 [PMID: 17803310]
  15. Beilstein J Org Chem. 2013 Nov 26;9:2641-59 [PMID: 24367429]
  16. Chem Sci. 2023 Mar 20;14(14):3923-3931 [PMID: 37035696]
  17. Sci Rep. 2015 Sep 15;5:14111 [PMID: 26370924]
  18. PLoS One. 2012;7(1):e30901 [PMID: 22292073]
  19. ACS Chem Biol. 2017 Oct 20;12(10):2552-2557 [PMID: 28937735]
  20. Nat Chem Biol. 2018 Jan;14(1):5-7 [PMID: 29155429]
  21. Curr Opin Biotechnol. 2001 Oct;12(5):439-45 [PMID: 11604317]
  22. Chem Biol. 1999 Aug;6(8):493-505 [PMID: 10421756]
  23. J Antimicrob Chemother. 1981 Dec;8 Suppl E:1-16 [PMID: 6976959]
  24. Chembiochem. 2011 Feb 11;12(3):477-87 [PMID: 21290549]
  25. Biochemistry. 2021 Jan 12;60(1):77-84 [PMID: 33356147]
  26. Appl Microbiol Biotechnol. 2021 Jan;105(1):247-258 [PMID: 33270152]
  27. J Biol Chem. 2008 Apr 25;283(17):11322-9 [PMID: 18308727]
  28. Nature. 2021 Aug;596(7873):583-589 [PMID: 34265844]
  29. J Bacteriol. 2017 Jun 13;199(13): [PMID: 28439036]
  30. Biochemistry. 2001 Dec 25;40(51):15570-80 [PMID: 11747432]
  31. Methods Mol Biol. 2016;1401:77-84 [PMID: 26831702]
  32. Chem Biol. 2000 Mar;7(3):211-24 [PMID: 10712928]
  33. Antimicrob Agents Chemother. 1972 Apr;1(4):283-8 [PMID: 4208895]
  34. Mol Microbiol. 2018 Oct;110(2):239-261 [PMID: 30098062]
  35. Proc Natl Acad Sci U S A. 2010 Sep 28;107(39):16828-33 [PMID: 20826445]
  36. Org Biomol Chem. 2008 Jun 7;6(11):1912-7 [PMID: 18480903]
  37. ACS Chem Biol. 2021 May 21;16(5):806-812 [PMID: 33847484]
  38. J Antibiot (Tokyo). 1976 May;29(5):492-500 [PMID: 956036]
  39. Cell Chem Biol. 2017 Jan 19;24(1):24-34 [PMID: 28017601]
  40. Methods Mol Biol. 2016;1401:53-61 [PMID: 26831700]
  41. Appl Environ Microbiol. 2016 Oct 27;82(22):6715-6727 [PMID: 27613678]
  42. Biotechnol Adv. 2018 Nov 15;36(7):1917-1927 [PMID: 30063950]
  43. FEMS Microbiol Lett. 1999 May 15;174(2):251-3 [PMID: 10339816]
  44. Chem Rev. 2019 Dec 11;119(23):11857-11911 [PMID: 31633341]
  45. Nucleic Acids Res. 2023 Jul 5;51(W1):W46-W50 [PMID: 37140036]
  46. Chembiochem. 2010 Aug 16;11(12):1700-9 [PMID: 20665770]
  47. J Am Chem Soc. 2022 Aug 10;144(31):14057-14070 [PMID: 35895935]
  48. Proc Natl Acad Sci U S A. 2021 Apr 27;118(17): [PMID: 33893237]
  49. Antimicrob Agents Chemother. 1982 Jan;21(1):85-92 [PMID: 6979307]
  50. Nature. 2015 Apr 16;520(7547):383-7 [PMID: 25624104]
  51. ACS Infect Dis. 2021 Sep 10;7(9):2697-2706 [PMID: 34355567]
  52. J Med Chem. 2017 Nov 9;60(21):8933-8944 [PMID: 28994597]
  53. J Antibiot (Tokyo). 1988 Jan;41(1):7-12 [PMID: 3346195]
  54. Anal Biochem. 2010 Sep 1;404(1):56-63 [PMID: 20450872]
  55. Antimicrob Agents Chemother. 2007 Mar;51(3):1028-37 [PMID: 17220414]
  56. Genetics. 1979 Jul;92(3):741-7 [PMID: 395018]
  57. Rev Infect Dis. 1985 Nov-Dec;7 Suppl 4:S579-93 [PMID: 3909315]
  58. Sci China Life Sci. 2021 Nov;64(11):1949-1963 [PMID: 33580428]
  59. J Mol Biol. 1990 Oct 5;215(3):403-10 [PMID: 2231712]

Grants

  1. R01 AI121072/NIAID NIH HHS

Word Cloud

Created with Highcharts 10.0.02biosynthesisNRPSmonobactamsynthesismonobactamsNon-ribosomalpeptidesynthetasesNRPSsassemblemetabolitesmedicinalcommercialvalueserinethreoninefigureprominentlyprocessesseparatelycanconvertedadditionalbuildingblocks3-diaminopropionateDap3-diaminobutyrateDabbringextensivebioinformaticsexperimentationcomposeunifiedviewwidelydistributednon-canonicalaminoacidsderivepyridoxal-mediatedβ-eliminationactivated-phosphorylatedsubstratesfollowedβ-additionaminedonorexaminingspeciessilentshow3-Dabdependsl-threoninekinaseDabAβ-replacementreactionl-aspartateDabBargininosuccinatelyase-likeproteinDabCgrowingclinicalimportancewithstandAmblerClassBmetallo-β-lactamasesretainantibioticactivitymakereprogrammedprecursormodifiedfeasibleattractivegoaloperonmarkerC4-alkylatedresponsible-diaminobutyrateproductionChemistry

Similar Articles

Cited By