Lignin precursors enhance exolaccase-started humification of bisphenol A to form functional polymers.

Shunyao Li, Dan Hong, Kai Sun
Author Information
  1. Shunyao Li: Laboratory of Wetland Protection and Ecological Restoration, Anhui University, Hefei 230601, China.
  2. Dan Hong: Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China.
  3. Kai Sun: Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China.

Abstract

Humification plays a significant role in converting phenolic pollutants and forming heterogeneous polymers, but few studies have been performed to investigate exolaccase-started humification (ESH). Herein, the influences of lignin precursors (LPs) on exolaccase-induced bisphenol A (BPA) removal and humification were explored. In particular, the architectural features and botanical effects of the formed humification products were also tested. ESH was extremely beneficial in boosting BPA removal in the presence of LPs. Compared with LP-free (58.49%), 100% of BPA was eliminated after the reaction with ESH for 72 h. Such a process was controlled by an exolaccase-caused random assembly of radicals, which generated a large number of hydrophobic polymers through nonspecific covalent binding of C-C and/or C-O. These humified polymers were extremely stable at pH 2.0-10.0 and -20 °C to 80 °C and displayed unique functions, , scavenged 2,2-diphenyl-1-picrylhydrazyl/2,2'-azino-bis3-ethylbenzothiazoline-6-sulphonic acid radicals and exerted antioxidant capacities. More importantly, the functional polymers could act as auxin analogs to increase the germination index (>100%), plant biomass, and salt tolerance of radish seedlings. Our findings disclosed that ESH could not only be optimized to mitigate the ecological risks of phenolic pollutants and sequester organic carbon in environmental bioremediation, but the resulting abundant auxin analogs also contributed to agricultural productivity.

Keywords

References

  1. Water Res. 2022 Jun 30;218:118486 [PMID: 35504159]
  2. Front Plant Sci. 2018 Apr 23;9:417 [PMID: 29740456]
  3. J Agric Food Chem. 2023 Aug 2;71(30):11386-11395 [PMID: 37470251]
  4. Appl Microbiol Biotechnol. 2022 Apr;106(8):2969-2979 [PMID: 35449361]
  5. J Hazard Mater. 2022 Aug 15;436:129269 [PMID: 35739784]
  6. Sci Total Environ. 2019 Nov 25;693:133751 [PMID: 31462391]
  7. J Environ Sci (China). 2019 Mar;77:167-173 [PMID: 30573080]
  8. Environ Pollut. 2020 Aug;263(Pt B):114381 [PMID: 32203859]
  9. Environ Sci Technol. 2011 Apr 1;45(7):2748-54 [PMID: 21405116]
  10. Chemosphere. 2020 Nov;258:127371 [PMID: 32554020]
  11. Sci Total Environ. 2016 Jan 15;541:623-637 [PMID: 26433328]
  12. ChemSusChem. 2021 Nov 4;14(21):4615-4635 [PMID: 34399033]
  13. Environ Sci Technol. 2015 Dec 15;49(24):14432-40 [PMID: 26571080]
  14. Environ Sci Technol. 2007 Feb 1;41(3):891-6 [PMID: 17328199]
  15. J Hazard Mater. 2020 Jul 5;393:122393 [PMID: 32120219]
  16. Microb Biotechnol. 2012 May;5(3):318-32 [PMID: 21791030]
  17. Environ Sci Technol. 2008 Sep 1;42(17):6703-9 [PMID: 18800552]
  18. Front Plant Sci. 2020 Jul 23;11:1127 [PMID: 32793273]
  19. Molecules. 2021 Dec 22;27(1): [PMID: 35011274]
  20. Environ Sci Technol. 2022 Jun 21;56(12):7412-7425 [PMID: 35638921]
  21. Sci Total Environ. 2022 Jan 1;802:150005 [PMID: 34525729]
  22. Chem Soc Rev. 2021 May 24;50(10):6221-6239 [PMID: 34027951]
  23. Crit Rev Biotechnol. 2021 Nov;41(7):969-993 [PMID: 33818232]
  24. Sci Total Environ. 2015 Jun 15;518-519:201-8 [PMID: 25756675]
  25. Sci Total Environ. 2022 Nov 20;848:157536 [PMID: 35878859]
  26. Sci Adv. 2022 Mar 11;8(10):eabm8145 [PMID: 35263134]
  27. iScience. 2022 Aug 08;25(9):104885 [PMID: 36039291]
  28. Trends Biotechnol. 2022 Sep;40(9):1061-1072 [PMID: 35339288]
  29. Int J Biol Macromol. 2023 Apr 1;233:123470 [PMID: 36736974]
  30. Bioresour Technol. 2003 May;87(3):209-14 [PMID: 12507858]
  31. Nature. 2015 Dec 3;528(7580):60-8 [PMID: 26595271]
  32. Chem Rev. 2018 Oct 24;118(20):10551-10616 [PMID: 30350583]
  33. Sci Total Environ. 2022 Aug 10;833:155133 [PMID: 35427620]
  34. Molecules. 2021 Apr 13;26(8): [PMID: 33924700]
  35. Water Res. 2014 Oct 15;63:285-95 [PMID: 25016301]

Word Cloud

Created with Highcharts 10.0.0polymershumificationESHprecursorsBPAanalogsphenolicpollutantsexolaccase-startedLPsbisphenolremovalalsoextremelyradicals2functionalauxinLigninHumificationplayssignificantroleconvertingformingheterogeneousstudiesperformedinvestigateHereininfluencesligninexolaccase-inducedexploredparticulararchitecturalfeaturesbotanicaleffectsformedproductstestedbeneficialboostingpresenceComparedLP-free5849%100%eliminatedreaction72 hprocesscontrolledexolaccase-causedrandomassemblygeneratedlargenumberhydrophobicnonspecificcovalentbindingC-Cand/orC-OhumifiedstablepH0-100-20 °C80 °C anddisplayeduniquefunctionsscavenged2-diphenyl-1-picrylhydrazyl/22'-azino-bis3-ethylbenzothiazoline-6-sulphonicacidexertedantioxidantcapacitiesimportantlyactincreasegerminationindex>100%plantbiomasssalttoleranceradishseedlingsfindingsdisclosedoptimizedmitigateecologicalriskssequesterorganiccarbonenvironmentalbioremediation butresultingabundantcontributedagriculturalproductivityenhanceformAuxinBisphenolCarbonsequestrationEnzymaticPhenolicdetoxification

Similar Articles

Cited By