Characterization of the dispirotripiperazine derivative PDSTP as antibiotic adjuvant and antivirulence compound against .

Andrea Bonacorsi, Gabriele Trespidi, Viola C Scoffone, Samuele Irudal, Giulia Barbieri, Olga Riabova, Natalia Monakhova, Vadim Makarov, Silvia Buroni
Author Information
  1. Andrea Bonacorsi: Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.
  2. Gabriele Trespidi: Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.
  3. Viola C Scoffone: Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.
  4. Samuele Irudal: Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.
  5. Giulia Barbieri: Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.
  6. Olga Riabova: Research Center of Biotechnology RAS, Moscow, Russia.
  7. Natalia Monakhova: Research Center of Biotechnology RAS, Moscow, Russia.
  8. Vadim Makarov: Research Center of Biotechnology RAS, Moscow, Russia.
  9. Silvia Buroni: Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.

Abstract

is a major human pathogen, able to establish difficult-to-treat infections in immunocompromised and people with cystic fibrosis (CF). The high rate of antibiotic treatment failure is due to its notorious drug resistance, often mediated by the formation of persistent biofilms. Alternative strategies, capable of overcoming resistance, include antivirulence compounds which impair bacterial pathogenesis without exerting a strong selective pressure, and the use of antimicrobial adjuvants that can resensitize drug-resistant bacteria to specific antibiotics. In this work, the dispirotripiperazine derivative PDSTP, already studied as antiviral, was characterized for its activity against adhesion to epithelial cells, its antibiotic adjuvant ability and its biofilm inhibitory potential. PDSTP was effective in impairing the adhesion of to various immortalized cell lines. Moreover, the combination of clinically relevant antibiotics with the compound led to a remarkable enhancement of the antibiotic efficacy towards multidrug-resistant clinical strains. PDSTP-ceftazidime combination maintained its efficacy in a infection model. Finally, the compound showed a promising biofilm inhibitory activity at low concentrations when tested both and using an pig lung model. Altogether, these results validate PDSTP as a promising compound, combining the ability to decrease virulence by impairing its adhesion and biofilm formation, with the capability to increase antibiotic efficacy against antibiotic resistant strains.

Keywords

References

  1. Gene Ther. 2002 Jun;9(11):683-5 [PMID: 12032687]
  2. Methods Mol Biol. 2016;1333:53-66 [PMID: 26468099]
  3. Int J Immunopathol Pharmacol. 2008 Jan-Mar;21(1):51-9 [PMID: 18336731]
  4. Cells. 2023 Jan 03;12(1): [PMID: 36611992]
  5. J Infect Public Health. 2014 Sep-Oct;7(5):436-44 [PMID: 24894307]
  6. PLoS One. 2020 Sep 22;15(9):e0239147 [PMID: 32960928]
  7. J Vis Exp. 2021 Jan 22;(167): [PMID: 33554970]
  8. J Bacteriol. 2007 Jun;189(12):4449-55 [PMID: 17400735]
  9. Front Cell Infect Microbiol. 2022 Jul 06;12:926758 [PMID: 35873152]
  10. Int J Mol Sci. 2020 Feb 05;21(3): [PMID: 32033477]
  11. Org Biomol Chem. 2016 Jan 7;14(1):138-48 [PMID: 26416170]
  12. Antiviral Res. 2002 Jul;55(1):117-27 [PMID: 12076756]
  13. ChemMedChem. 2021 Feb 4;16(3):513-523 [PMID: 33090655]
  14. Med Res Rev. 2002 Jan;22(1):1-25 [PMID: 11746174]
  15. Pathogens. 2022 Feb 27;11(3): [PMID: 35335624]
  16. J Antimicrob Chemother. 1981 Oct;8(4):249-76 [PMID: 6795174]
  17. Signal Transduct Target Ther. 2022 Jun 25;7(1):199 [PMID: 35752612]
  18. Lancet. 2022 Feb 12;399(10325):629-655 [PMID: 35065702]
  19. FEMS Immunol Med Microbiol. 2010 Jul 1;59(2):207-20 [PMID: 20528926]
  20. Microbiology (Reading). 2000 Oct;146 ( Pt 10):2395-2407 [PMID: 11021916]
  21. J Appl Microbiol. 1998 Apr;84(4):538-44 [PMID: 9633651]
  22. Commun Biol. 2022 Aug 25;5(1):871 [PMID: 36008485]
  23. Antiviral Res. 2022 Jun;202:105327 [PMID: 35487465]
  24. Acta Naturae. 2017 Jan-Mar;9(1):105-107 [PMID: 28461981]
  25. Proc Natl Acad Sci U S A. 2013 Oct 29;110(44):17981-6 [PMID: 24143808]
  26. Antimicrob Agents Chemother. 2010 Aug;54(8):3341-6 [PMID: 20479195]
  27. Nat Microbiol. 2017 Mar 06;2:17028 [PMID: 28263303]
  28. J Natl Cancer Inst. 1973 Nov;51(5):1417-23 [PMID: 4357758]
  29. Front Microbiol. 2022 Dec 06;13:1029098 [PMID: 36560948]
  30. Molecules. 2022 Aug 06;27(15): [PMID: 35956958]
  31. J Med Chem. 2019 Oct 10;62(19):8665-8681 [PMID: 31063379]
  32. ChemMedChem. 2022 Jun 20;17(12):e202200081 [PMID: 35426976]
  33. PLoS Pathog. 2012;8(4):e1002616 [PMID: 22496644]
  34. Biomolecules. 2019 Nov 01;9(11): [PMID: 31683947]
  35. Int J Antimicrob Agents. 2015 Nov;46(5):538-45 [PMID: 26364845]
  36. ACS Chem Biol. 2022 Nov 18;17(11):3178-3190 [PMID: 36269311]
  37. Virology. 2003 Jun 20;311(1):134-43 [PMID: 12832211]
  38. Lancet Infect Dis. 2018 Mar;18(3):318-327 [PMID: 29276051]
  39. Am J Respir Cell Mol Biol. 1994 Jan;10(1):38-47 [PMID: 7507342]
  40. Antimicrob Agents Chemother. 2018 Oct 24;62(11): [PMID: 30201815]
  41. Eur J Med Chem. 2021 Feb 5;211:113014 [PMID: 33218683]
  42. Sci Rep. 2017 Mar 03;7:43321 [PMID: 28256611]
  43. Front Microbiol. 2015 Aug 05;6:815 [PMID: 26300878]
  44. J Antimicrob Chemother. 2012 Apr;67(4):962-9 [PMID: 22294647]
  45. Her Russ Acad Sci. 2022;92(4):488-490 [PMID: 36091851]
  46. PLoS Med. 2016 Nov 29;13(11):e1002184 [PMID: 27898664]
  47. Front Microbiol. 2016 Feb 24;7:220 [PMID: 26941735]
  48. J Med Chem. 2008 May 22;51(10):2871-8 [PMID: 18260614]
  49. Antimicrob Agents Chemother. 2017 Apr 24;61(5): [PMID: 28223377]
  50. Bioorg Med Chem. 2019 May 15;27(10):2090-2099 [PMID: 30975502]
  51. Antimicrob Agents Chemother. 2006 May;50(5):1623-7 [PMID: 16641427]
  52. BMC Microbiol. 2023 Mar 30;23(1):86 [PMID: 36991325]

Word Cloud

Created with Highcharts 10.0.0antibioticPDSTPcompoundresistanceantivirulenceadhesionadjuvantbiofilmcombinationefficacydrugformationantibioticsdispirotripiperazinederivativeactivityabilityinhibitoryimpairingstrainsmodelpromisingmajorhumanpathogenableestablishdifficult-to-treatinfectionsimmunocompromisedpeoplecysticfibrosisCFhighratetreatmentfailureduenotoriousoftenmediatedpersistentbiofilmsAlternativestrategiescapableovercomingincludecompoundsimpairbacterialpathogenesiswithoutexertingstrongselectivepressureuseantimicrobialadjuvantscanresensitizedrug-resistantbacteriaspecificworkalreadystudiedantiviralcharacterizedepithelialcellspotentialeffectivevariousimmortalizedcelllinesMoreoverclinicallyrelevantledremarkableenhancementtowardsmultidrug-resistantclinicalPDSTP-ceftazidimemaintainedinfectionFinallyshowedlowconcentrationstestedusingpiglungAltogetherresultsvalidatecombiningdecreasevirulencecapabilityincreaseresistantCharacterizationPseudomonasaeruginosaantiadhesionantibiofilmtherapy

Similar Articles

Cited By (1)