High methane ebullition throughout one year in a regulated central European stream.

Tamara Michaelis, Felicitas Kaplar, Thomas Baumann, Anja Wunderlich, Florian Einsiedl
Author Information
  1. Tamara Michaelis: TUM School of Engineering and Design, Chair of Hydrogeology, Technical University of Munich, Munich, Germany.
  2. Felicitas Kaplar: TUM School of Engineering and Design, Chair of Hydrogeology, Technical University of Munich, Munich, Germany.
  3. Thomas Baumann: TUM School of Engineering and Design, Chair of Hydrogeology, Technical University of Munich, Munich, Germany.
  4. Anja Wunderlich: TUM School of Engineering and Design, Chair of Hydrogeology, Technical University of Munich, Munich, Germany.
  5. Florian Einsiedl: TUM School of Engineering and Design, Chair of Hydrogeology, Technical University of Munich, Munich, Germany. f.einsiedl@tum.de.

Abstract

Ebullition transports large amounts of the potent greenhouse gas methane (CH ) from aquatic sediments to the atmosphere. River beds are a main source of biogenic CH , but emission estimates and the relative contribution of ebullition as a transport pathway are poorly constrained. This study meets a need for more direct measurements with a whole-year data set on CH ebullition from a small stream in southern Germany. Four gas traps were installed in a cross section in a river bend, representing different bed substrates between undercut and slip-off slope. For a comparison, diffusive fluxes were estimated from concentration gradients in the sediment and from measurements of dissolved CH in the surface water. The data revealed highest activity with gas fluxes above 1000 ml m  d in the center of the stream, sustained ebullition during winter, and a larger contribution of ebullitive compared to diffusive CH fluxes. Increased gas fluxes from the center of the river may be connected to greater exchange with the surface water, thus increased carbon and nutrient supply, and a higher sediment permeability for gas bubbles. By using stable isotope fractionation, we estimated that 12-44% of the CH transported diffusively was oxidized. Predictors like temperature, air pressure drop, discharge, or precipitation could not or only poorly explain temporal variations of ebullitive CH fluxes.

References

  1. Environ Microbiol. 2021 Jul;23(7):3773-3788 [PMID: 33538379]
  2. Sci Total Environ. 2019 Apr 1;659:1045-1057 [PMID: 31096320]
  3. Environ Sci Technol. 2015 Jan 6;49(1):277-83 [PMID: 25412274]
  4. Nat Commun. 2018 Jul 18;9(1):2803 [PMID: 30022025]
  5. Limnol Oceanogr. 2021 Dec;66(12):4063-4076 [PMID: 35874272]
  6. mSystems. 2019 Dec 3;4(6): [PMID: 31796563]
  7. Sci Data. 2022 Nov 04;9(1):674 [PMID: 36333353]
  8. ISME J. 2019 Mar;13(3):752-766 [PMID: 30375505]
  9. Sci Total Environ. 2021 May 10;768:144582 [PMID: 33736331]
  10. J Chromatogr Sci. 1998 May;36(5):253-6 [PMID: 9599433]
  11. Environ Sci Technol. 2008 Nov 1;42(21):7818-23 [PMID: 19031866]
  12. Glob Chang Biol. 2016 Mar;22(3):1075-85 [PMID: 26872424]
  13. Environ Sci Technol. 2010 Apr 1;44(7):2419-25 [PMID: 20218543]
  14. Glob Chang Biol. 2014 Apr;20(4):1075-88 [PMID: 24273093]
  15. Appl Environ Microbiol. 2008 Oct;74(19):6114-20 [PMID: 18676698]
  16. Environ Manage. 2017 Oct;60(4):615-629 [PMID: 28733708]
  17. Ann Rev Mar Sci. 2009;1:213-44 [PMID: 21141036]
  18. Environ Sci Technol. 2018 Feb 20;52(4):2007-2015 [PMID: 29377677]
  19. Proc Natl Acad Sci U S A. 2020 Sep 8;117(36):21994-22001 [PMID: 32839306]
  20. Appl Environ Microbiol. 2014 Feb;80(4):1291-8 [PMID: 24317083]
  21. Nature. 2023 Sep;621(7979):530-535 [PMID: 37587344]
  22. Environ Sci Technol. 2013 Aug 6;47(15):8130-7 [PMID: 23799866]
  23. Environ Sci Technol. 2019 Mar 5;53(5):2364-2374 [PMID: 30694050]
  24. Water Environ Res. 2001 Sep-Oct;73(5):543-57 [PMID: 11765990]
  25. Nat Commun. 2022 Jul 1;13(1):3810 [PMID: 35778387]
  26. Nature. 2006 Apr 13;440(7086):918-21 [PMID: 16612380]
  27. Environ Sci Technol. 2015 Nov 17;49(22):13121-9 [PMID: 26477785]
  28. Nat Commun. 2017 Nov 22;8(1):1682 [PMID: 29167452]
  29. Environ Sci Technol. 2016 Nov 1;50(21):11680-11687 [PMID: 27696829]

Word Cloud

Created with Highcharts 10.0.0CHgasfluxesebullitionstreammethanecontributionpoorlymeasurementsdatariverdiffusiveestimatedsedimentsurfacewatercenterebullitiveEbullitiontransportslargeamountspotentgreenhouseaquaticsedimentsatmosphereRiverbedsmainsourcebiogenicemissionestimatesrelativetransportpathwayconstrainedstudymeetsneeddirectwhole-yearsetsmallsouthernGermanyFourtrapsinstalledcrosssectionbendrepresentingdifferentbedsubstratesundercutslip-offslopecomparisonconcentrationgradientsdissolvedrevealedhighestactivity1000 ml m dsustainedwinterlargercomparedIncreasedmayconnectedgreaterexchangethusincreasedcarbonnutrientsupplyhigherpermeabilitybubblesusingstableisotopefractionation12-44%transporteddiffusivelyoxidizedPredictorsliketemperatureairpressuredropdischargeprecipitationexplaintemporalvariationsHighthroughoutoneyearregulatedcentralEuropean

Similar Articles

Cited By