Decreased eggshell strength caused by impairment of uterine calcium transport coincide with higher bone minerals and quality in aged laying hens.

Yu Fu, Jianmin Zhou, Martine Schroyen, Haijun Zhang, Shugeng Wu, Guanghai Qi, Jing Wang
Author Information
  1. Yu Fu: Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
  2. Jianmin Zhou: Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
  3. Martine Schroyen: Precision Livestock and Nutrition Laboratory, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, Gembloux, B-5030, Belgium.
  4. Haijun Zhang: Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
  5. Shugeng Wu: Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
  6. Guanghai Qi: Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
  7. Jing Wang: Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China. wangjing@caas.cn. ORCID

Abstract

BACKGROUND: Deteriorations in eggshell and bone quality are major challenges in aged laying hens. This study compared the differences of eggshell quality, bone parameters and their correlations as well as uterine physiological characteristics and the bone remodeling processes of hens laying eggs of different eggshell breaking strength to explore the mechanism of eggshell and bone quality reduction and their interaction. A total of 240 74-week-old Hy-line Brown laying hens were selected and allocated to a high (HBS, 44.83 ± 1.31 N) or low (LBS, 24.43 ± 0.57 N) eggshell breaking strength group.
RESULTS: A decreased thickness, weight and weight ratio of eggshells were observed in the LBS, accompanied with ultrastructural deterioration and total Ca reduction. Bone quality was negatively correlated with eggshell quality, marked with enhanced structures and increased components in the LBS. In the LBS, the mammillary knobs and effective layer grew slowly. At the initiation stage of eggshell calcification, a total of 130 differentially expressed genes (DEGs, 122 upregulated and 8 downregulated) were identified in the uterus of hens in the LBS relative to those in the HBS. These DEGs were relevant to apoptosis due to the cellular Ca overload. Higher values of p62 protein level, caspase-8 activity, Bax protein expression and lower values of Bcl protein expression and Bcl/Bax ratio were seen in the LBS. TUNEL assay and hematoxylin-eosin staining showed a significant increase in TUNEL-positive cells and tissue damages in the uterus of the LBS. Although few DEGs were identified at the growth stage, similar uterine tissue damages were also observed in the LBS. The expressions of runt-related transcription factor 2 and osteocalcin were upregulated in humeri of the LBS. Enlarged diameter and more structural damages of endocortical bones and decreased ash were observed in femurs of the HBS.
CONCLUSION: The lower eggshell breaking strength may be attributed to a declined Ca transport due to uterine tissue damages, which could affect eggshell calcification and lead to a weak ultrastructure. Impaired uterine Ca transport may result in reduced femoral bone resorption and increased humeral bone formation to maintain a higher mineral and bone quality in the LBS.

Keywords

References

  1. Front Biosci (Landmark Ed). 2012 Jan 01;17(4):1266-80 [PMID: 22201802]
  2. J Cell Biochem. 2003 Nov 1;90(4):756-65 [PMID: 14587031]
  3. Poult Sci. 2012 Aug;91(8):1790-5 [PMID: 22802169]
  4. Poult Sci. 2004 Feb;83(2):193-9 [PMID: 14979569]
  5. Am J Med Genet A. 2006 Dec 1;140(23):2646-706 [PMID: 17103447]
  6. Poult Sci. 2017 Aug 1;96(8):2699-2707 [PMID: 28482094]
  7. Theriogenology. 2014 May;81(8):1129-38 [PMID: 24612789]
  8. J Proteomics. 2015 Jan 15;113:178-93 [PMID: 25284052]
  9. Int J Biochem Cell Biol. 2021 Sep;138:106053 [PMID: 34371171]
  10. Mol Cell. 2016 Jul 7;63(1):34-48 [PMID: 27345151]
  11. Comp Biochem Physiol A Mol Integr Physiol. 2009 Apr;152(4):447-69 [PMID: 19118637]
  12. Physiology (Bethesda). 2016 May;31(3):233-45 [PMID: 27053737]
  13. Front Physiol. 2022 Aug 31;13:962330 [PMID: 36117717]
  14. Animals (Basel). 2021 Feb 19;11(2): [PMID: 33669736]
  15. Mol Endocrinol. 2003 Mar;17(3):423-35 [PMID: 12554794]
  16. Nat Med. 2017 Sep;23(9):1072-1079 [PMID: 28825716]
  17. Am J Kidney Dis. 1995 Mar;25(3):506-13 [PMID: 7872334]
  18. Cell Death Dis. 2021 Apr 20;12(5):416 [PMID: 33879777]
  19. J Bone Miner Res. 2015 Mar;30(3):543-53 [PMID: 25213918]
  20. Exp Hematol. 2017 Oct;54:4-11 [PMID: 28757433]
  21. Metab Bone Dis Relat Res. 1984;5(4):191-3 [PMID: 6738357]
  22. Science. 1949 Mar 18;109(2829):282 [PMID: 17775055]
  23. Poult Sci. 2020 Nov;99(11):5771-5782 [PMID: 33142495]
  24. Biochim Biophys Acta Mol Cell Res. 2018 Nov;1865(11 Pt B):1660-1667 [PMID: 29746899]
  25. PLoS One. 2018 May 9;13(5):e0194974 [PMID: 29742164]
  26. Animals (Basel). 2021 Dec 09;11(12): [PMID: 34944288]
  27. Animal. 2021 Dec;15 Suppl 1:100282 [PMID: 34246597]
  28. Poult Sci. 2005 May;84(5):718-22 [PMID: 15913183]
  29. Poult Sci. 2021 Mar;100(3):100808 [PMID: 33518301]
  30. J Anim Sci. 2017 Sep;95(9):3885-3904 [PMID: 28992000]
  31. Poult Sci. 2022 Mar;101(3):101672 [PMID: 35074590]
  32. Cell Death Differ. 2010 Feb;17(2):268-77 [PMID: 19713971]
  33. Poult Sci. 2023 Sep;102(9):102895 [PMID: 37441904]
  34. Autophagy. 2016;12(1):1-222 [PMID: 26799652]
  35. Sci Rep. 2016 Aug 24;6:32116 [PMID: 27554830]
  36. Poult Sci. 2018 Mar 1;97(3):1050-1058 [PMID: 29272529]
  37. Biomed Res Int. 2015;2015:596789 [PMID: 26120583]
  38. Comp Biochem Physiol A Mol Integr Physiol. 2008 Dec;151(4):477-90 [PMID: 18682298]
  39. J Mol Endocrinol. 2011 Feb 15;46(2):63-6 [PMID: 21169421]
  40. Poult Sci. 2012 Aug;91(8):1819-24 [PMID: 22802173]
  41. Cell. 1981 Oct;26(1 Pt 1):99-105 [PMID: 7034958]
  42. Nat Rev Mol Cell Biol. 2007 Sep;8(9):741-52 [PMID: 17717517]
  43. Poult Sci. 2018 May 1;97(5):1818-1823 [PMID: 29506193]
  44. Res Vet Sci. 2008 Jun;84(3):374-81 [PMID: 17692877]
  45. Am J Physiol. 1989 Jul;257(1 Pt 1):C153-7 [PMID: 2502022]
  46. Biochim Biophys Acta. 1999 May 5;1411(2-3):401-14 [PMID: 10320672]
  47. Animals (Basel). 2021 Feb 26;11(3): [PMID: 33652961]
  48. Poult Sci. 2023 Jul;102(7):102710 [PMID: 37148572]
  49. Poult Sci. 2021 Jul;100(7):101102 [PMID: 34082176]
  50. Br Poult Sci. 2016 Jun;57(3):330-8 [PMID: 26982003]
  51. Br Poult Sci. 2014;55(5):653-61 [PMID: 25109942]
  52. Biol Trace Elem Res. 2021 Dec;199(12):4700-4712 [PMID: 33452669]
  53. Br Poult Sci. 2004 Aug;45(4):463-70 [PMID: 15484719]
  54. Nature. 1989 Feb 23;337(6209):740-3 [PMID: 2537471]
  55. BMC Genomics. 2019 Sep 11;20(1):707 [PMID: 31510913]
  56. Curr Opin Pharmacol. 2015 Jun;22:41-50 [PMID: 25854704]
  57. Nat Methods. 2015 Apr;12(4):357-60 [PMID: 25751142]
  58. Poult Sci. 2000 Jul;79(7):1033-41 [PMID: 10901207]
  59. Biochemistry. 1995 Oct 10;34(40):13125-32 [PMID: 7548073]
  60. Korean J Food Sci Anim Resour. 2018 Oct;38(5):1080-1091 [PMID: 30479513]
  61. Probiotics Antimicrob Proteins. 2022 Jun;14(3):415-425 [PMID: 34757604]
  62. Endocrinology. 1997 Nov;138(11):4607-12 [PMID: 9348185]
  63. Virus Res. 2009 Sep;144(1-2):350-4 [PMID: 19501124]
  64. Int J Biol Sci. 2015 Oct 04;11(11):1325-36 [PMID: 26535027]
  65. BMC Evol Biol. 2019 Mar 7;19(1):71 [PMID: 30845911]
  66. Poult Sci. 2005 Apr;84(4):522-7 [PMID: 15844806]
  67. BMC Genomics. 2020 Nov 9;21(1):770 [PMID: 33167850]
  68. Poult Sci. 2018 Feb 1;97(2):378-396 [PMID: 29211895]

Grants

  1. 32172743/National Natural Science Foundation of China
  2. CARS-40/China Agriculture Research System
  3. ASTIP/Agricultural Science and Technology Innovation Program (ASTIP) of CAAS

Word Cloud

Created with Highcharts 10.0.0eggshellLBSbonequalityhensuterinelayingstrengthCadamagestransportbreakingtotalHBSobservedDEGsproteintissueagedreductiondecreasedweightratioBoneincreasedstagecalcificationupregulatedidentifieduterusduevaluesexpressionlowermayhigherBACKGROUND:Deteriorationsmajorchallengesstudycompareddifferencesparameterscorrelationswellphysiologicalcharacteristicsremodelingprocesseseggsdifferentexploremechanisminteraction24074-week-oldHy-lineBrownselectedallocatedhigh4483 ± 131 Nlow2443 ± 057 NgroupRESULTS:thicknesseggshellsaccompaniedultrastructuraldeteriorationnegativelycorrelatedmarkedenhancedstructurescomponentsmammillaryknobseffectivelayergrewslowlyinitiation130differentiallyexpressedgenes1228downregulatedrelativerelevantapoptosiscellularoverloadHigherp62levelcaspase-8activityBaxBclBcl/BaxseenTUNELassayhematoxylin-eosinstainingshowedsignificantincreaseTUNEL-positivecellsAlthoughgrowthsimilaralsoexpressionsrunt-relatedtranscriptionfactor 2osteocalcinhumeriEnlargeddiameterstructuralendocorticalbonesashfemursCONCLUSION:attributeddeclinedaffectleadweakultrastructureImpairedresultreducedfemoralresorptionhumeralformationmaintainmineralDecreasedcausedimpairmentcalciumcoincidemineralsparameterCalciumEggshellLayinghenTissuedamage

Similar Articles

Cited By