Neuron-astrocyte metabolic coupling facilitates spinal plasticity and maintenance of inflammatory pain.

Sebastián Marty-Lombardi, Shiying Lu, Wojciech Ambroziak, Katrin Schrenk-Siemens, Jialin Wang, Anna A DePaoli-Roach, Anna M Hagenston, Hagen Wende, Anke Tappe-Theodor, Manuela Simonetti, Hilmar Bading, Jürgen G Okun, Rohini Kuner, Thomas Fleming, Jan Siemens
Author Information
  1. Sebastián Marty-Lombardi: Institute of Pharmacology, Heidelberg University, Heidelberg, Germany. ORCID
  2. Shiying Lu: Institute of Pharmacology, Heidelberg University, Heidelberg, Germany.
  3. Wojciech Ambroziak: Institute of Pharmacology, Heidelberg University, Heidelberg, Germany. ORCID
  4. Katrin Schrenk-Siemens: Institute of Pharmacology, Heidelberg University, Heidelberg, Germany. ORCID
  5. Jialin Wang: Institute of Pharmacology, Heidelberg University, Heidelberg, Germany. ORCID
  6. Anna A DePaoli-Roach: Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
  7. Anna M Hagenston: Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany. ORCID
  8. Hagen Wende: Institute of Pharmacology, Heidelberg University, Heidelberg, Germany.
  9. Anke Tappe-Theodor: Institute of Pharmacology, Heidelberg University, Heidelberg, Germany.
  10. Manuela Simonetti: Institute of Pharmacology, Heidelberg University, Heidelberg, Germany. ORCID
  11. Hilmar Bading: Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany. ORCID
  12. Jürgen G Okun: Dietmar-Hopp-Metabolic Center, Division of Neuropaediatrics and Metabolic Medicine, Heidelberg University, Heidelberg, Germany.
  13. Rohini Kuner: Institute of Pharmacology, Heidelberg University, Heidelberg, Germany. ORCID
  14. Thomas Fleming: Department of Endocrinology, Diabetology, Metabolism and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany. ORCID
  15. Jan Siemens: Institute of Pharmacology, Heidelberg University, Heidelberg, Germany. jan.siemens@pharma.uni-heidelberg.de. ORCID

Abstract

Long-lasting pain stimuli can trigger maladaptive changes in the spinal cord, reminiscent of plasticity associated with memory formation. Metabolic coupling between astrocytes and neurons has been implicated in neuronal plasticity and memory formation in the central nervous system, but neither its involvement in pathological pain nor in spinal plasticity has been tested. Here we report a form of neuroglia signalling involving spinal astrocytic glycogen dynamics triggered by persistent noxious stimulation via upregulation of the Protein Targeting to Glycogen (PTG) in spinal astrocytes. PTG drove glycogen build-up in astrocytes, and blunting glycogen accumulation and turnover by Ptg gene deletion reduced pain-related behaviours and promoted faster recovery by shortening pain maintenance in mice. Furthermore, mechanistic analyses revealed that glycogen dynamics is a critically required process for maintenance of pain by facilitating neuronal plasticity in spinal lamina 1 neurons. In summary, our study describes a previously unappreciated mechanism of astrocyte-neuron metabolic communication through glycogen breakdown in the spinal cord that fuels spinal neuron hyperexcitability.

References

  1. Cell. 2009 Oct 16;139(2):267-84 [PMID: 19837031]
  2. Cell. 2011 Mar 4;144(5):810-23 [PMID: 21376239]
  3. Purinergic Signal. 2021 Mar;17(1):49-54 [PMID: 33169292]
  4. Science. 2016 Dec 2;354(6316):1144-1148 [PMID: 27934764]
  5. J Physiol. 1946 Apr;104:361-5 [PMID: 21027231]
  6. Int J Mol Sci. 2015 Oct 29;16(11):25959-81 [PMID: 26528968]
  7. Science. 2003 Feb 21;299(5610):1237-40 [PMID: 12595694]
  8. Cell. 2012 Nov 21;151(5):1126-37 [PMID: 23178128]
  9. Pharmacol Rep. 2018 Apr;70(2):206-216 [PMID: 29475003]
  10. Glia. 2023 Dec;71(12):2770-2781 [PMID: 37564028]
  11. Proc Natl Acad Sci U S A. 2021 Aug 10;118(32): [PMID: 34344824]
  12. Pain. 2009 May;143(1-2):114-22 [PMID: 19307059]
  13. Neurochem Int. 2004 Sep;45(4):529-36 [PMID: 15186919]
  14. J Vis Exp. 2011 Nov 27;(57):e3348 [PMID: 22143312]
  15. Methods Mol Biol. 2018;1820:95-112 [PMID: 29884940]
  16. F1000Res. 2015 Oct 14;4:1070 [PMID: 26674615]
  17. Nat Protoc. 2014 Jan;9(1):171-81 [PMID: 24385147]
  18. J Neurosci. 2021 Apr 7;41(14):3040-3050 [PMID: 33827970]
  19. Brain. 2011 Apr;134(Pt 4):1127-39 [PMID: 21371995]
  20. Front Physiol. 2022 Jan 11;12:825816 [PMID: 35087428]
  21. Nature. 2002 Aug 29;418(6901):970-5 [PMID: 12198546]
  22. J Neurochem. 1999 Jul;73(1):400-7 [PMID: 10386993]
  23. Physiol Rev. 2021 Jan 1;101(1):213-258 [PMID: 32525759]
  24. Elife. 2021 Nov 12;10: [PMID: 34766906]
  25. Brain Res. 1993 Oct 1;623(2):208-14 [PMID: 8221102]
  26. Cell Metab. 2010 Apr 7;11(4):311-9 [PMID: 20374963]
  27. Oncogene. 1991 Feb;6(2):223-7 [PMID: 1900356]
  28. Neuropharmacology. 2017 Jan;112(Pt A):228-234 [PMID: 27543416]
  29. Neuron. 2018 Dec 19;100(6):1292-1311 [PMID: 30571942]
  30. J Biol Chem. 2010 Apr 23;285(17):12851-61 [PMID: 20178984]
  31. Elife. 2016 Mar 24;5: [PMID: 27011354]
  32. Contemp Top Lab Anim Sci. 2003 Mar;42(2):49-50 [PMID: 19757627]
  33. J Neurosci. 2008 May 7;28(19):4888-96 [PMID: 18463242]
  34. Am J Physiol Cell Physiol. 2003 Mar;284(3):C696-704 [PMID: 12421692]
  35. J Neurochem. 2023 Jul;166(2):109-137 [PMID: 36919769]
  36. Comp Med. 2019 Dec 1;69(6):451-467 [PMID: 31896391]
  37. Proc Natl Acad Sci U S A. 2016 Jul 26;113(30):8526-31 [PMID: 27402767]
  38. Nat Rev Neurosci. 2016 Dec 15;18(1):20-30 [PMID: 27974843]
  39. Neurochem Res. 2019 Mar;44(3):531-538 [PMID: 30109556]
  40. Front Integr Neurosci. 2016 Mar 03;10:10 [PMID: 26973477]
  41. Neurochem Res. 2021 Oct;46(10):2525-2537 [PMID: 33523395]
  42. Sci Rep. 2016 Nov 17;6:37251 [PMID: 27853254]
  43. Neuron. 2016 Dec 21;92(6):1181-1195 [PMID: 27939582]
  44. Nat Methods. 2019 Dec;16(12):1226-1232 [PMID: 31570887]
  45. Glia. 2019 Jan;67(1):27-36 [PMID: 30430652]
  46. Nat Neurosci. 2007 Nov;10(11):1407-13 [PMID: 17952067]
  47. Front Mol Neurosci. 2022 Mar 31;15:864502 [PMID: 35431805]
  48. Biochem J. 1975 Apr;148(1):97-106 [PMID: 1171687]
  49. Pain. 2010 Feb;148(2):206-214 [PMID: 19879049]
  50. Mol Psychiatry. 2016 Aug;21(8):1070-6 [PMID: 26503760]
  51. J Neurosci. 1992 Dec;12(12):4923-31 [PMID: 1334506]
  52. Neurosci Lett. 2017 Jan 10;637:18-25 [PMID: 25725168]
  53. Science. 1997 Mar 7;275(5305):1475-8 [PMID: 9045612]
  54. J Neurochem. 1992 Feb;58(2):511-7 [PMID: 1729397]
  55. Biophys J. 2010 Dec 15;99(12):4066-77 [PMID: 21156150]
  56. Pain Rep. 2021 Mar 09;6(1):e864 [PMID: 33981920]
  57. Glia. 1992;6(4):264-8 [PMID: 1464458]
  58. Pain. 2015 Apr;156 Suppl 1:S11-S17 [PMID: 25789427]
  59. Sci Rep. 2020 Aug 6;10(1):13179 [PMID: 32764697]
  60. Science. 2006 Jun 16;312(5780):1659-62 [PMID: 16778058]
  61. J Neurosci. 2019 Oct 16;39(42):8291-8304 [PMID: 31308097]
  62. Neuron. 2021 Oct 20;109(20):3211-3227 [PMID: 34450024]
  63. Nat Commun. 2014;5:3284 [PMID: 24518663]
  64. Front Integr Neurosci. 2016 Jan 19;9:70 [PMID: 26834586]
  65. Nat Neurosci. 2020 Nov;23(11):1376-1387 [PMID: 33020652]
  66. Science. 2015 Mar 20;347(6228):1362-7 [PMID: 25792327]
  67. J Neurosci. 2015 Nov 11;35(45):15082-7 [PMID: 26558779]
  68. Ann Ist Super Sanita. 2004;40(2):223-9 [PMID: 15536274]
  69. Nat Rev Neurosci. 2019 Nov;20(11):667-685 [PMID: 31537912]
  70. Cereb Cortex. 2007 Aug;17(8):1918-33 [PMID: 17065549]
  71. Mol Cell. 2015 Aug 6;59(3):491-501 [PMID: 26253029]
  72. J Neurosci. 2019 Jun 5;39(23):4422-4433 [PMID: 30926749]
  73. PLoS One. 2011;6(6):e21594 [PMID: 21738722]
  74. PLoS One. 2013 Jul 04;8(7):e67807 [PMID: 23861810]
  75. Neuron. 2015 May 20;86(4):883-901 [PMID: 25996133]
  76. IBRO Rep. 2016 Oct 04;1:46-53 [PMID: 30135927]
  77. Nature. 2021 Nov;599(7884):296-301 [PMID: 34707293]
  78. J Cell Biol. 2007 Jul 2;178(1):167-78 [PMID: 17591922]
  79. Trends Pharmacol Sci. 2009 Aug;30(8):397-402 [PMID: 19616317]
  80. PLoS One. 2014 Oct 31;9(10):e109916 [PMID: 25360519]
  81. Neurochem Res. 2012 Nov;37(11):2419-31 [PMID: 22638776]
  82. Science. 2016 Nov 4;354(6312):578-584 [PMID: 27811268]
  83. J Pain Res. 2017 Nov 06;10:2585-2593 [PMID: 29158690]

Grants

  1. ERC-CoG-772395/European Commission (EC)
  2. SFB1158/Deutsche Forschungsgemeinschaft (German Research Foundation)
  3. LT000762/2019-L/Human Frontier Science Program (HFSP)

MeSH Term

Mice
Animals
Astrocytes
Pain
Neurons
Spinal Cord
Glycogen

Chemicals

Glycogen

Word Cloud

Created with Highcharts 10.0.0spinalpainplasticityglycogenastrocytesmaintenancecordmemoryformationcouplingneuronsneuronaldynamicsPTGmetabolicLong-lastingstimulicantriggermaladaptivechangesreminiscentassociatedMetabolicimplicatedcentralnervoussystemneitherinvolvementpathologicaltestedreportformneurogliasignallinginvolvingastrocytictriggeredpersistentnoxiousstimulationviaupregulationProteinTargetingGlycogendrovebuild-upbluntingaccumulationturnoverPtggenedeletionreducedpain-relatedbehaviourspromotedfasterrecoveryshorteningmiceFurthermoremechanisticanalysesrevealedcriticallyrequiredprocessfacilitatinglamina1summarystudydescribespreviouslyunappreciatedmechanismastrocyte-neuroncommunicationbreakdownfuelsneuronhyperexcitabilityNeuron-astrocytefacilitatesinflammatory

Similar Articles

Cited By