Genomic and transcriptomic studies on flavonoid biosynthesis in Lagerstroemia indica.

Chunmei Yu, Guoyuan Liu, Jin Qin, Xi Wan, Anfang Guo, Hui Wei, Yanhong Chen, Bolin Lian, Fei Zhong, Jian Zhang
Author Information
  1. Chunmei Yu: School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China. ORCID
  2. Guoyuan Liu: School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China.
  3. Jin Qin: School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China.
  4. Xi Wan: School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China.
  5. Anfang Guo: School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China.
  6. Hui Wei: School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China. ORCID
  7. Yanhong Chen: School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China. ORCID
  8. Bolin Lian: School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China. ORCID
  9. Fei Zhong: School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China.
  10. Jian Zhang: School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China. yjnkyy@ntu.edu.cn.

Abstract

BACKGROUND: Lagerstroemia indica is a widely cultivated ornamental woody shrub/tree of the family Lythraceae that is used as a traditional medicinal plant in East Asia and Egypt. However, unlike other ornamental woody plants, its genome is not well-investigated, which hindered the discovery of the key genes that regulate important traits and the synthesis of bioactive compounds.
RESULTS: In this study, the genomic sequences of L. indica were determined using several next-generation sequencing technologies. Altogether, 324.01 Mb sequences were assembled and 98.21% (318.21 Mb) of them were placed in 24 pseudo-chromosomes. The heterozygosity, repeated sequences, and GC residues occupied 1.65%, 29.17%, and 38.64% of the genome, respectively. In addition, 28,811 protein-coding gene models, 327 miRNAs, 552 tRNAs, 214 rRNAs, and 607 snRNAs were identified. The intra- and interspecies synteny and Ks analysis revealed that L. indica exhibits a hexaploidy. The co-expression profiles of the genes involved in the phenylpropanoid (PA) and flavonoid/anthocyanin (ABGs) pathways with the R2R3 MYB genes (137 members) showed that ten R2R3 MYB genes positively regulate flavonoid/anthocyanin biosynthesis. The colors of flowers with white, purple (PB), and deep purplish pink (DPB) petals were found to be determined by the levels of delphinidin-based (Dp) derivatives. However, the substrate specificities of LiDFR and LiOMT probably resulted in the different compositions of flavonoid/anthocyanin. In L. indica, two LiTTG1s (LiTTG1-1 and LiTTG1-2) were found to be the homologs of AtTTG1 (WD40). LiTTG1-1 was found to repress anthocyanin biosynthesis using the tobacco transient transfection assay.
CONCLUSIONS: This study showed that the ancestor L. indica experienced genome triplication approximately 38.5 million years ago and that LiTTG1-1 represses anthocyanin biosynthesis. Furthermore, several genes such as LiDFR, LiOMTs, and R2R3 LiMYBs are related to anthocyanin biosynthesis. Further studies are required to clarify the mechanisms and alleles responsible for flower color development.

Keywords

References

  1. Genome Res. 2008 Dec;18(12):1944-54 [PMID: 18832442]
  2. Plant Biotechnol J. 2021 Apr;19(4):717-730 [PMID: 33098334]
  3. New Phytol. 2022 Nov;236(3):1075-1088 [PMID: 35842781]
  4. Biol Futur. 2021 Dec;72(4):473-488 [PMID: 34554492]
  5. Commun Biol. 2019 Jul 19;2:267 [PMID: 31341966]
  6. Plant Biotechnol J. 2019 Jun;17(6):1048-1057 [PMID: 30515982]
  7. Front Plant Sci. 2022 Sep 06;13:1008829 [PMID: 36147236]
  8. Syst Biol. 2007 Aug;56(4):564-77 [PMID: 17654362]
  9. Front Plant Sci. 2018 Feb 28;9:149 [PMID: 29541079]
  10. Genet Mol Res. 2015 Apr 30;14(2):4369-80 [PMID: 25966210]
  11. Drug Discov Ther. 2012 Aug;6(4):212-7 [PMID: 23006992]
  12. Plant Physiol. 2018 Feb;176(2):1410-1422 [PMID: 29233850]
  13. Plant Physiol. 2009 Aug;150(4):2057-70 [PMID: 19525322]
  14. Nat Plants. 2019 Aug;5(8):833-845 [PMID: 31383970]
  15. New Phytol. 2015 Jun;206(4):1364-77 [PMID: 25250741]
  16. Front Plant Sci. 2017 Mar 28;8:428 [PMID: 28400785]
  17. J Exp Bot. 2015 Nov;66(21):6563-77 [PMID: 26208646]
  18. PLoS One. 2020 May 14;15(5):e0232986 [PMID: 32407419]
  19. Phytochemistry. 2010 Sep;71(13):1474-84 [PMID: 20580386]
  20. Nat Genet. 2011 Oct 16;43(11):1059-65 [PMID: 22001755]
  21. Plant Biotechnol J. 2018 Jul;16(7):1363-1374 [PMID: 29271050]
  22. Front Plant Sci. 2020 Sep 17;11:583153 [PMID: 33042196]
  23. Sci Rep. 2019 Nov 7;9(1):16174 [PMID: 31700069]
  24. Metabolites. 2022 Sep 16;12(9): [PMID: 36144275]
  25. Plant Cell. 2014 Mar;26(3):962-80 [PMID: 24642943]
  26. Bioinformatics. 2014 May 1;30(9):1312-3 [PMID: 24451623]
  27. Front Plant Sci. 2016 Sep 22;7:1422 [PMID: 27713753]
  28. Plant Biotechnol J. 2020 Apr;18(4):955-968 [PMID: 31549477]
  29. Int J Mol Sci. 2022 Oct 09;23(19): [PMID: 36233274]
  30. Hortic Res. 2020 Oct 1;7:165 [PMID: 33082971]
  31. Nat Commun. 2012;3:1318 [PMID: 23271652]
  32. Mol Plant. 2020 Aug 3;13(8):1194-1202 [PMID: 32585190]
  33. Appl Plant Sci. 2013 Jan 31;1(2): [PMID: 25202512]
  34. Nat Genet. 2011 May;43(5):476-81 [PMID: 21478890]
  35. Hortic Res. 2023 Jul 21;10(9):uhad146 [PMID: 37701453]
  36. Proc Natl Acad Sci U S A. 2012 Sep 11;109(37):14746-53 [PMID: 22908297]
  37. Anal Chim Acta. 2012 Jun 30;732:145-52 [PMID: 22688046]
  38. Plant J. 2017 Sep;91(6):1108-1128 [PMID: 28654223]
  39. Mol Biol Evol. 2007 Aug;24(8):1586-91 [PMID: 17483113]
  40. Phytother Res. 2010 Aug;24(8):1223-8 [PMID: 20309950]
  41. Molecules. 2014 Nov 14;19(11):18747-66 [PMID: 25405291]
  42. Nucleic Acids Res. 1999 Jan 15;27(2):573-80 [PMID: 9862982]
  43. J Exp Bot. 2015 Mar;66(5):1427-36 [PMID: 25628328]
  44. Planta. 2018 Nov;248(5):1063-1078 [PMID: 30078075]
  45. Mol Biol Evol. 2017 Jul 1;34(7):1812-1819 [PMID: 28387841]
  46. Int J Mol Sci. 2019 Nov 11;20(22): [PMID: 31718025]
  47. Plant J. 2021 Aug;107(4):1003-1015 [PMID: 34077584]
  48. Plant J. 2021 Jul;107(1):198-214 [PMID: 33884679]
  49. Plant Cell. 2004 Feb;16(2):450-64 [PMID: 14742877]
  50. Genome Res. 2003 Sep;13(9):2178-89 [PMID: 12952885]
  51. Front Plant Sci. 2022 Sep 20;13:942217 [PMID: 36204074]
  52. Theor Appl Genet. 2023 Mar 13;136(3):55 [PMID: 36913001]
  53. BMC Plant Biol. 2014 Jan 10;14:16 [PMID: 24406039]
  54. PLoS Biol. 2018 Jan 11;16(1):e2003706 [PMID: 29324757]
  55. Planta. 2011 Nov;234(5):865-81 [PMID: 21643990]
  56. Nat Plants. 2021 Jun;7(6):748-756 [PMID: 34135482]
  57. Curr Opin Plant Biol. 2020 Jun;55:93-99 [PMID: 32387820]
  58. Plant Cell. 2017 Aug;29(8):1907-1926 [PMID: 28733420]
  59. Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 [PMID: 9254694]
  60. Genes Dev. 1997 Jun 1;11(11):1422-34 [PMID: 9192870]
  61. BMC Plant Biol. 2019 Jun 26;19(1):281 [PMID: 31242865]
  62. J Integr Plant Biol. 2008 May;50(5):581-8 [PMID: 18713426]
  63. Nucleic Acids Res. 2012 Jan;40(Database issue):D1178-86 [PMID: 22110026]
  64. Plant J. 1998 Jan;13(1):39-50 [PMID: 9680963]
  65. J Exp Bot. 2014 Aug;65(15):4255-69 [PMID: 24821954]
  66. Plant Cell Physiol. 2015 Jan;56(1):28-40 [PMID: 25015943]
  67. Bioinformatics. 2006 May 15;22(10):1269-71 [PMID: 16543274]
  68. Plant J. 2014 Nov;80(4):695-708 [PMID: 25227758]
  69. New Phytol. 2017 Jan;213(1):287-299 [PMID: 27500520]
  70. Genome Res. 2013 Feb;23(2):396-408 [PMID: 23149293]
  71. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W265-8 [PMID: 17485477]
  72. F1000Res. 2015 Nov 20;4:1310 [PMID: 26835000]
  73. Front Plant Sci. 2022 Sep 07;13:970023 [PMID: 36161015]
  74. Molecules. 2021 Nov 08;26(21): [PMID: 34771153]
  75. J Exp Bot. 2020 May 30;71(10):3066-3079 [PMID: 32182355]
  76. Hortic Res. 2020 Dec 1;7(1):201 [PMID: 33328474]
  77. Nature. 2014 Jun 19;510(7505):356-62 [PMID: 24919147]
  78. Dev Biol. 2009 Jan 15;325(2):412-21 [PMID: 18992236]
  79. PLoS One. 2014 Nov 13;9(11):e112707 [PMID: 25393679]
  80. Plant Cell. 2009 Jan;21(1):248-66 [PMID: 19122102]
  81. Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 [PMID: 15034147]
  82. BMC Genomics. 2021 Jun 9;22(1):434 [PMID: 34107868]
  83. Nat Plants. 2018 Jul;4(7):473-484 [PMID: 29892093]
  84. Plant J. 2020 Nov;104(3):662-678 [PMID: 32772482]

Grants

  1. MS12020070/Science and Technology Project of Nantong City
  2. Su[2021]TG03/Forestry Science and Technology of Jiangsu Province
  3. BE2018326/Jiangsu Provincial Key Research and Development Program

MeSH Term

Lagerstroemia
Anthocyanins
Gene Expression Profiling
Genomics
Flavonoids

Chemicals

Anthocyanins
Flavonoids

Word Cloud

Created with Highcharts 10.0.0indicabiosynthesisgenesgenomeLLagerstroemiasequencesflavonoid/anthocyaninR2R3MYBfoundLiTTG1-1anthocyaninornamentalwoodyHoweverregulatestudydeterminedusingseveral38showedLiDFRtriplicationstudiesBACKGROUND:widelycultivatedshrub/treefamilyLythraceaeusedtraditionalmedicinalplantEastAsiaEgyptunlikeplantswell-investigatedhindereddiscoverykeyimportanttraitssynthesisbioactivecompoundsRESULTS:genomicnext-generationsequencingtechnologiesAltogether32401 Mbassembled9821%31821 Mbplaced24pseudo-chromosomesheterozygosityrepeatedGCresiduesoccupied165%2917%64%respectivelyaddition28811protein-codinggenemodels327miRNAs552tRNAs214rRNAs607snRNAsidentifiedintra-interspeciessyntenyKsanalysisrevealedexhibitshexaploidyco-expressionprofilesinvolvedphenylpropanoidPAABGspathways137memberstenpositivelycolorsflowerswhitepurplePBdeeppurplishpinkDPBpetalslevelsdelphinidin-basedDpderivativessubstratespecificitiesLiOMTprobablyresulteddifferentcompositionstwoLiTTG1sLiTTG1-2homologsAtTTG1WD40represstobaccotransienttransfectionassayCONCLUSIONS:ancestorexperiencedapproximately5 millionyearsagorepressesFurthermoreLiOMTsLiMYBsrelatedrequiredclarifymechanismsallelesresponsibleflowercolordevelopmentGenomictranscriptomicflavonoidAnthocyaninLiTTG1transcriptionalfactorWhole

Similar Articles

Cited By