Understanding bacterial pathogenicity: a closer look at the journey of harmful microbes.

Jyoti Soni, Sristi Sinha, Rajesh Pandey
Author Information
  1. Jyoti Soni: Division of Immunology and Infectious Disease Biology, Integrative Genomics of Host Pathogen Laboratory, Council of Scientific & Industrial Research-Institute of Genomics and Integrative Biology, New Delhi, India.
  2. Sristi Sinha: Division of Immunology and Infectious Disease Biology, Integrative Genomics of Host Pathogen Laboratory, Council of Scientific & Industrial Research-Institute of Genomics and Integrative Biology, New Delhi, India.
  3. Rajesh Pandey: Division of Immunology and Infectious Disease Biology, Integrative Genomics of Host Pathogen Laboratory, Council of Scientific & Industrial Research-Institute of Genomics and Integrative Biology, New Delhi, India.

Abstract

Bacteria are the most prevalent form of microorganisms and are classified into two categories based on their mode of existence: intracellular and extracellular. While most bacteria are beneficial to human health, others are pathogenic and can cause mild to severe infections. These bacteria use various mechanisms to evade host immunity and cause diseases in humans. The susceptibility of a host to bacterial infection depends on the effectiveness of the immune system, overall health, and genetic factors. Malnutrition, chronic illnesses, and age-related vulnerabilities are the additional confounders to disease severity phenotypes. The impact of bacterial pathogens on public health includes the transmission of these pathogens from healthcare facilities, which contributes to increased morbidity and mortality. To identify the most significant threats to public health, it is crucial to understand the global burden of common bacterial pathogens and their pathogenicity. This knowledge is required to improve immunization rates, improve the effectiveness of vaccines, and consider the impact of antimicrobial resistance when assessing the situation. Many bacteria have developed antimicrobial resistance, which has significant implications for infectious diseases and favors the survival of resilient microorganisms. This review emphasizes the significance of understanding the bacterial pathogens that cause this health threat on a global scale.

Keywords

References

  1. Annu Rev Microbiol. 2019 Sep 8;73:359-385 [PMID: 31500532]
  2. Int J Mol Sci. 2021 Sep 16;22(18): [PMID: 34576166]
  3. Curr Opin Immunol. 2001 Feb;13(1):37-44 [PMID: 11154915]
  4. Nat Rev Microbiol. 2009 May;7(5):333-40 [PMID: 19369949]
  5. PLoS One. 2014 Jun 10;9(6):e99420 [PMID: 24915541]
  6. Biomed Opt Express. 2021 Dec 01;12(12):7906-7916 [PMID: 35003874]
  7. Clin Microbiol Rev. 2004 Apr;17(2):323-47 [PMID: 15084504]
  8. Virulence. 2013 May 15;4(4):273-83 [PMID: 23563389]
  9. Cell. 2001 Feb 23;104(4):477-85 [PMID: 11239406]
  10. mBio. 2022 Nov 14;13(6):e0274222 [PMID: 36374039]
  11. Antimicrob Agents Chemother. 2000 Jul;44(7):1771-7 [PMID: 10858329]
  12. BMC Res Notes. 2016 Apr 12;9:216 [PMID: 27071769]
  13. Science. 2013 May 10;340(6133):697-701 [PMID: 23661751]
  14. Philos Trans R Soc Lond B Biol Sci. 2016 Nov 5;371(1707): [PMID: 27672153]
  15. Cell Microbiol. 2019 Nov;21(11):e13063 [PMID: 31167044]
  16. Front Microbiol. 2018 Feb 14;9:100 [PMID: 29491848]
  17. mSystems. 2022 Apr 26;7(2):e0138321 [PMID: 35354321]
  18. Appl Environ Microbiol. 2006 Dec;72(12):7431-7 [PMID: 17028233]
  19. Cold Spring Harb Perspect Biol. 2015 Jun 08;7(7):a019216 [PMID: 26054743]
  20. Infect Immun. 2010 Feb;78(2):704-15 [PMID: 19948837]
  21. Cell Microbiol. 2019 Nov;21(11):e13077 [PMID: 31251447]
  22. PLoS Pathog. 2015 Mar 05;11(3):e1004644 [PMID: 25742647]
  23. Lancet. 2023 Dec 17;400(10369):2221-2248 [PMID: 36423648]
  24. Clin Microbiol Rev. 2009 Apr;22(2):240-73, Table of Contents [PMID: 19366914]
  25. mSphere. 2023 Oct 24;8(5):e0035123 [PMID: 37589460]
  26. BMC Infect Dis. 2019 Nov 4;19(1):928 [PMID: 31684890]
  27. Front Cell Infect Microbiol. 2016 May 17;6:52 [PMID: 27242970]
  28. ADMET DMPK. 2022 Mar 04;10(2):89-90 [PMID: 35350116]
  29. Microbiol Spectr. 2016 Aug;4(4): [PMID: 27726779]
  30. mBio. 2022 Feb 8;13(1):e0291821 [PMID: 35130729]
  31. Microbiol Spectr. 2016 Jun;4(3): [PMID: 27337444]
  32. J Invertebr Pathol. 2005 Jan;88(1):1-7 [PMID: 15707863]
  33. Front Cell Infect Microbiol. 2023 Apr 18;13:1129172 [PMID: 37143745]
  34. Annu Rev Microbiol. 1986;40:29-53 [PMID: 2946261]
  35. Cells. 2023 Jan 02;12(1): [PMID: 36611977]
  36. Trends Immunol. 2023 Dec;44(12):945-953 [PMID: 37919213]
  37. Front Immunol. 2020 Sep 08;11:2096 [PMID: 33013882]
  38. EMBO J. 2023 May 2;42(9):e113490 [PMID: 36920246]
  39. Front Microbiol. 2021 Jul 20;12:682571 [PMID: 34354682]
  40. R Soc Open Sci. 2023 Nov 1;10(11):230284 [PMID: 37920566]
  41. Cell. 2006 Feb 24;124(4):767-82 [PMID: 16497587]
  42. Trans R Soc Trop Med Hyg. 2008 Jan;102(1):5-6 [PMID: 17619030]
  43. ACS Infect Dis. 2021 Apr 9;7(4):695-720 [PMID: 33733747]
  44. Microorganisms. 2020 Nov 26;8(12): [PMID: 33255913]
  45. Animals (Basel). 2023 Nov 27;13(23): [PMID: 38067017]
  46. Microorganisms. 2023 Jan 19;11(2): [PMID: 36838224]
  47. mSystems. 2020 Jun 2;5(3): [PMID: 32487745]
  48. Clin Infect Dis. 2022 Jul 6;74(12):2089-2114 [PMID: 34864936]
  49. Nat Chem Biol. 2013 Dec;9(12):761-8 [PMID: 24231617]
  50. Front Cell Infect Microbiol. 2022 Apr 22;12:862935 [PMID: 35531336]
  51. Int J Microbiol. 2020 Jun 12;2020:8045646 [PMID: 32612660]
  52. Nat Microbiol. 2018 Jul;3(7):824-835 [PMID: 29946164]
  53. Methods Mol Biol. 2012;799:1-20 [PMID: 21993636]
  54. Curr Protoc Microbiol. 2009 Nov;Appendix 3:Appendix 3C [PMID: 19885931]
  55. Front Cell Infect Microbiol. 2023 May 22;13:1185571 [PMID: 37284502]
  56. FEMS Microbiol Rev. 2019 Jul 1;43(4):341-361 [PMID: 30916769]
  57. Int J Med Microbiol. 2015 Sep;305(6):493-500 [PMID: 26005182]
  58. Pathogens. 2022 Dec 07;11(12): [PMID: 36558825]
  59. Appl Microbiol Biotechnol. 2024 Dec;108(1):60 [PMID: 38183483]
  60. J Proteome Res. 2012 Jun 1;11(6):3231-45 [PMID: 22483232]
  61. Nat Rev Microbiol. 2018 Jun;16(6):341-354 [PMID: 29556036]
  62. Front Public Health. 2014 Sep 16;2:145 [PMID: 25279369]
  63. Nature. 2014 Nov 27;515(7528):505-11 [PMID: 25428498]
  64. Trends Biochem Sci. 2002 Jun;27(6):308-14 [PMID: 12069791]
  65. Annu Rev Cell Dev Biol. 2014;30:79-109 [PMID: 25103867]
  66. Front Microbiol. 2019 Apr 01;10:539 [PMID: 30988669]
  67. Nutr Rev. 2012 Aug;70 Suppl 1:S38-44 [PMID: 22861806]
  68. Front Immunol. 2019 Jan 07;9:2868 [PMID: 30666248]
  69. Curr Res Microb Sci. 2022 May 28;3:100141 [PMID: 35909627]
  70. Elife. 2023 Sep 12;12: [PMID: 37697804]
  71. Nat Immunol. 2002 Nov;3(11):1033-40 [PMID: 12407412]
  72. AIMS Microbiol. 2018 Jun 26;4(3):482-501 [PMID: 31294229]
  73. Front Immunol. 2022 Jul 13;13:943344 [PMID: 35911720]
  74. Microbiol Spectr. 2016 Apr;4(2): [PMID: 27227291]
  75. Signal Transduct Target Ther. 2022 Apr 23;7(1):135 [PMID: 35461318]
  76. Front Cell Infect Microbiol. 2022 Dec 02;12:981827 [PMID: 36530432]
  77. Microbiol Mol Biol Rev. 2006 Sep;70(3):660-703 [PMID: 16959965]
  78. Nat Rev Microbiol. 2021 May;19(5):287-302 [PMID: 33542518]
  79. Nature. 2018 Jul;559(7715):498-506 [PMID: 30046073]
  80. Int J Mol Sci. 2020 Aug 26;21(17): [PMID: 32858901]
  81. J Immunol Res. 2019 Apr 14;2019:1356540 [PMID: 31111075]
  82. PLoS Biol. 2016 Aug 19;14(8):e1002533 [PMID: 27541692]
  83. Front Microbiol. 2012 Feb 29;3:71 [PMID: 22393329]
  84. Can Commun Dis Rep. 2017 Mar 02;43(3-4):62-66 [PMID: 29770066]
  85. Lancet Infect Dis. 2006 Oct;6(10):653-63 [PMID: 17008174]
  86. Annu Rev Immunol. 1993;11:129-63 [PMID: 8476559]
  87. Pathogens. 2021 Jan 22;10(2): [PMID: 33499114]
  88. Dent Clin North Am. 1996 Apr;40(2):263-75 [PMID: 8641520]
  89. Virulence. 2014 Jan 1;5(1):213-8 [PMID: 24193365]
  90. J Infect Dis. 2001 Aug 1;184(3):337-44 [PMID: 11443560]
  91. Curr Opin Microbiol. 2018 Aug;44:79-87 [PMID: 30195150]
  92. Nat Rev Microbiol. 2009 Jul;7(7):493-503 [PMID: 19503065]
  93. Nat Commun. 2023 Aug 16;14(1):4959 [PMID: 37587119]
  94. Annu Rev Microbiol. 2008;62:19-33 [PMID: 18785836]
  95. Cell Host Microbe. 2012 Oct 18;12(4):419-31 [PMID: 23084912]
  96. Trends Immunol. 2022 Sep;43(9):696-705 [PMID: 35907675]
  97. Microorganisms. 2019 Jun 22;7(6): [PMID: 31234491]
  98. J Innate Immun. 2018;10(5-6):432-441 [PMID: 29642066]
  99. Clin Microbiol Rev. 2004 Jan;17(1):14-56 [PMID: 14726454]
  100. Emerg Infect Dis. 2005 Dec;11(12):1828-34 [PMID: 16485466]
  101. Trends Microbiol. 2023 Jan;31(1):62-75 [PMID: 36055896]
  102. Int J Mol Sci. 2021 Apr 01;22(7): [PMID: 33916050]

Word Cloud

Created with Highcharts 10.0.0healthbacterialbacteriapathogenscausehostmicroorganismsdiseasessusceptibilityeffectivenessimmunediseaseseverityimpactpublicsignificantglobalimproveantimicrobialresistanceBacteriaprevalentformclassifiedtwocategoriesbasedmodeexistence:intracellularextracellularbeneficialhumanotherspathogeniccanmildsevereinfectionsusevariousmechanismsevadeimmunityhumansinfectiondependssystemoverallgeneticfactorsMalnutritionchronicillnessesage-relatedvulnerabilitiesadditionalconfoundersphenotypesincludestransmissionhealthcarefacilitiescontributesincreasedmorbiditymortalityidentifythreatscrucialunderstandburdencommonpathogenicityknowledgerequiredimmunizationratesvaccinesconsiderassessingsituationManydevelopedimplicationsinfectiousfavorssurvivalresilientreviewemphasizessignificanceunderstandingthreatscaleUnderstandingpathogenicity:closerlookjourneyharmfulmicrobesAMRresponse

Similar Articles

Cited By