Development of Serum Lactate Level-Based Nomograms for Predicting Diabetic Kidney Disease in Type 2 Diabetes Mellitus Patients.

Chunxia Jiang, Xiumei Ma, Jiao Chen, Yan Zeng, Man Guo, Xiaozhen Tan, Yuping Wang, Peng Wang, Pijun Yan, Yi Lei, Yang Long, Betty Yuen Kwan Law, Yong Xu
Author Information
  1. Chunxia Jiang: Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, People's Republic of China. ORCID
  2. Xiumei Ma: Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, People's Republic of China.
  3. Jiao Chen: Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China.
  4. Yan Zeng: Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, People's Republic of China.
  5. Man Guo: Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China. ORCID
  6. Xiaozhen Tan: Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China.
  7. Yuping Wang: Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, People's Republic of China.
  8. Peng Wang: Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, People's Republic of China.
  9. Pijun Yan: Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China.
  10. Yi Lei: Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, People's Republic of China.
  11. Yang Long: Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China. ORCID
  12. Betty Yuen Kwan Law: Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, People's Republic of China.
  13. Yong Xu: Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, People's Republic of China. ORCID

Abstract

Purpose: To establish nomograms integrating serum lactate levels and traditional risk factors for predicting diabetic kidney disease (DKD) in type 2 diabetes mellitus (T2DM) patients.
Patients and methods: A total of 570 T2DM patients and 100 healthy subjects were enrolled. T2DM patients were categorized into normal and high lactate groups. Univariate and multivariate logistic regression analyses were employed to identify independent predictors for DKD. Then, nomograms for predicting DKD were established, and the model performance was evaluated using the area under the receiver operating characteristic curve (AUC), calibration, and decision curve analysis (DCA).
Results: T2DM patients exhibited higher lactate levels compared to those in healthy subjects. Glucose, platelet, uric acid, creatinine, and hypertension were independent factors for DKD in T2DM patients with normal lactate levels, while diabetes duration, creatinine, total cholesterol, and hypertension were indicators in high lactate levels group (<0.05). The AUC values were 0.834 (95% CI, 0.776 to 0.891) and 0.741 (95% CI, 0.688 to 0.795) for nomograms in both normal lactate and high lactate groups, respectively. The calibration curve demonstrated excellent agreement of fit. Furthermore, the DCA revealed that the threshold probability and highest Net Yield were 17-99% and 0.36, and 24-99% and 0.24 for the models in normal lactate and high lactate groups, respectively.
Conclusion: The serum lactate level-based nomogram models, combined with traditional risk factors, offer an effective tool for predicting DKD probability in T2DM patients. This approach holds promise for early risk assessment and tailored intervention strategies.

Keywords

References

  1. Diabetes Care. 2019 Jun;42(6):1120-1128 [PMID: 30967435]
  2. Front Endocrinol (Lausanne). 2022 Dec 09;13:1079725 [PMID: 36568108]
  3. Front Physiol. 2022 Sep 08;13:927078 [PMID: 36160854]
  4. PLoS One. 2013;8(1):e55113 [PMID: 23383072]
  5. Diabetes Care. 2022 Oct 1;45(10):2326-2335 [PMID: 35984439]
  6. Front Public Health. 2022 Sep 20;10:997713 [PMID: 36203677]
  7. Am J Kidney Dis. 2007 Feb;49(2 Suppl 2):S12-154 [PMID: 17276798]
  8. Exp Diabetes Res. 2012;2012:234812 [PMID: 22474418]
  9. Clin Chim Acta. 2006 Apr;366(1-2):293-8 [PMID: 16343469]
  10. Prim Care Diabetes. 2022 Jun;16(3):457-465 [PMID: 35305901]
  11. Clin Chem Lab Med. 2018 Jun 27;56(7):1100-1108 [PMID: 29447114]
  12. Kidney360. 2021 Jun 30;2(8):1240-1250 [PMID: 35369650]
  13. Diabetes Metab Res Rev. 2022 Nov;38(8):e3572 [PMID: 36001650]
  14. Med Res Rev. 2022 Jul;42(4):1518-1544 [PMID: 35274315]
  15. Aging (Albany NY). 2020 Jun 2;12(11):10317-10336 [PMID: 32484786]
  16. Transl Res. 2022 Nov;249:88-109 [PMID: 35788054]
  17. Mediators Inflamm. 2021 Aug 18;2021:6104529 [PMID: 34456629]
  18. Signal Transduct Target Ther. 2022 Sep 1;7(1):305 [PMID: 36050306]
  19. Int J Mol Sci. 2022 Jul 27;23(15): [PMID: 35955405]
  20. Diab Vasc Dis Res. 2021 Jan-Feb;18(1):1479164121992524 [PMID: 33567895]
  21. Expert Opin Drug Discov. 2021 Apr;16(4):447-461 [PMID: 33003971]
  22. Diabetes Care. 2021 Sep 16;: [PMID: 34531309]
  23. Drug Dev Res. 2023 Apr;84(2):275-295 [PMID: 36598092]
  24. Diabetes Obes Metab. 2023 Apr;25 Suppl 1:5-12 [PMID: 36811222]
  25. Kidney Res Clin Pract. 2023 Jul;42(4):445-459 [PMID: 37551126]
  26. Crit Rev Clin Lab Sci. 2017 Aug;54(5):326-342 [PMID: 28956668]
  27. Free Radic Biol Med. 2021 Aug 1;171:260-271 [PMID: 34019934]
  28. Int J Mol Sci. 2023 Jun 29;24(13): [PMID: 37446016]
  29. Sci Rep. 2020 Jan 20;10(1):669 [PMID: 31959772]
  30. Chem Biol Interact. 2021 Aug 25;345:109576 [PMID: 34252406]
  31. Bioorg Chem. 2020 Sep;102:104110 [PMID: 32739480]
  32. Lancet Diabetes Endocrinol. 2017 Jun;5(6):431-437 [PMID: 28365411]
  33. Nat Rev Nephrol. 2018 May;14(5):291-312 [PMID: 29456246]
  34. Kidney Int. 2023 Dec;104(6):1135-1149 [PMID: 37843477]
  35. Sci Rep. 2023 Jan 14;13(1):768 [PMID: 36641500]
  36. Diabetes Res Clin Pract. 2023 Sep;203:110838 [PMID: 37478980]
  37. Diabetologia. 2018 Nov;61(11):2277-2289 [PMID: 30032426]
  38. Nutrients. 2020 Mar 18;12(3): [PMID: 32197513]
  39. Kidney Int. 2022 Nov;102(5S):S1-S127 [PMID: 36272764]
  40. Am J Kidney Dis. 2022 Aug;80(2):196-206.e1 [PMID: 34999159]
  41. Transl Res. 2024 Mar;265:71-87 [PMID: 37952771]
  42. Diabetes Metab Syndr Obes. 2023 Feb 10;16:385-395 [PMID: 36816816]
  43. JAMA. 2016 Aug 9;316(6):602-10 [PMID: 27532915]
  44. Diabetes Care. 2021 Jan;44(1):89-97 [PMID: 33203706]
  45. Exp Biol Med (Maywood). 2012 Nov;237(11):1310-21 [PMID: 23239442]
  46. Front Endocrinol (Lausanne). 2022 Jun 10;13:859266 [PMID: 35757423]
  47. Diabetes Metab J. 2021 Sep;45(5):708-718 [PMID: 33844903]
  48. Chem Biodivers. 2022 Aug;19(8):e202200280 [PMID: 35796520]
  49. Diabet Med. 1998 Jul;15(7):539-53 [PMID: 9686693]
  50. Semin Nephrol. 2018 Mar;38(2):111-120 [PMID: 29602394]
  51. Diabetes Care. 2020 Jan;43(1):122-129 [PMID: 31796570]
  52. Nefrologia (Engl Ed). 2020 Nov - Dec;40(6):585-596 [PMID: 33036786]
  53. Am J Kidney Dis. 2014 Oct;64(4):510-33 [PMID: 25257325]
  54. Nutr Metab Cardiovasc Dis. 2021 Jul 22;31(8):2253-2272 [PMID: 34059383]

Word Cloud

Created with Highcharts 10.0.0lactate0T2DMpatientsDKDnomogramslevelsriskfactorsnormalhighserumpredictinggroupscurvetraditionaldiabetickidneydisease2diabetestotalhealthysubjectsindependentmodelAUCcalibrationDCAcreatininehypertension95%CIrespectivelyprobabilitymodelsPurpose:establishintegratingtypemellitusPatientsmethods:570100enrolledcategorizedUnivariatemultivariatelogisticregressionanalysesemployedidentifypredictorsestablishedperformanceevaluatedusingareareceiveroperatingcharacteristicdecisionanalysisResults:exhibitedhighercomparedGlucoseplateleturicaciddurationcholesterolindicatorsgroup<005values834776891741688795demonstratedexcellentagreementfitFurthermorerevealedthresholdhighestNetYield17-99%3624-99%24Conclusion:level-basednomogramcombinedoffereffectivetoolapproachholdspromiseearlyassessmenttailoredinterventionstrategiesDevelopmentSerumLactateLevel-BasedNomogramsPredictingDiabeticKidneyDiseaseTypeDiabetesMellitusPatientsprediction

Similar Articles

Cited By