Strengthening genomic surveillance by direct sequencing of residual positive specimens.

Yanhui Peng, Margaret M Williams, Lingzi Xiaoli, Ashley Simon, Heather Fueston, Maria L Tondella, Michael R Weigand
Author Information
  1. Yanhui Peng: Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA. ORCID
  2. Margaret M Williams: Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA. ORCID
  3. Lingzi Xiaoli: ASRT Inc., Atlanta, Georgia, USA. ORCID
  4. Ashley Simon: Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA. ORCID
  5. Heather Fueston: Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA. ORCID
  6. Maria L Tondella: Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA. ORCID
  7. Michael R Weigand: Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA. ORCID

Abstract

Whole-genome sequencing (WGS) of microbial pathogens recovered from patients with infectious disease facilitates high-resolution strain characterization and molecular epidemiology. However, increasing reliance on culture-independent methods to diagnose infectious diseases has resulted in few isolates available for WGS. Here, we report a novel culture-independent approach to genome characterization of , the causative agent of pertussis and a paradigm for insufficient genomic surveillance due to limited culture of clinical isolates. Sequencing libraries constructed directly from residual pertussis-positive diagnostic nasopharyngeal specimens were hybridized with biotinylated RNA "baits" targeting fragments within complex mixtures that contained high concentrations of host and microbial background DNA. Recovery of genome sequence data was evaluated with mock and pooled negative clinical specimens spiked with reducing concentrations of either purified DNA or inactivated cells. Targeted enrichment increased the yield of sequencing reads up to 90% while simultaneously decreasing host reads to less than 10%. Filtered sequencing reads provided sufficient genome coverage to perform characterization via whole-genome single nucleotide polymorphisms and whole-genome multilocus sequencing typing. Moreover, these data were concordant with sequenced isolates recovered from the same specimens such that phylogenetic reconstructions from either consistently clustered the same putatively linked cases. The optimized protocol is suitable for nasopharyngeal specimens with diagnostic IS Ct < 35 and >10 ng DNA. Routine implementation of these methods could strengthen surveillance and study of pertussis resurgence by capturing additional cases with genomic characterization.

Keywords

References

  1. Appl Environ Microbiol. 2021 Feb 26;87(6): [PMID: 33452027]
  2. N Engl J Med. 2019 Dec 26;381(26):2569-2580 [PMID: 31881145]
  3. Nat Biotechnol. 2009 Feb;27(2):182-9 [PMID: 19182786]
  4. J Clin Microbiol. 2015 Jun;53(6):1842-7 [PMID: 25809969]
  5. J Clin Microbiol. 2020 Nov 18;58(12): [PMID: 32938738]
  6. Emerg Microbes Infect. 2019;8(1):461-470 [PMID: 30898080]
  7. Evol Med Public Health. 2022 Aug 03;10(1):363-370 [PMID: 36032328]
  8. MMWR Morb Mortal Wkly Rep. 2017 Apr 21;66(15):397-403 [PMID: 28426643]
  9. PLoS One. 2018 Apr 13;13(4):e0195979 [PMID: 29652945]
  10. Pediatr Infect Dis J. 2016 Jan;35(1):39-44 [PMID: 26418242]
  11. mSphere. 2022 Jun 29;7(3):e0000922 [PMID: 35491834]
  12. J Infect Dis. 2022 Sep 4;226(4):729-737 [PMID: 35325163]
  13. BMC Res Notes. 2014 Oct 15;7:727 [PMID: 25319278]
  14. mSphere. 2021 Mar 3;6(2): [PMID: 33658279]
  15. J Bacteriol. 2017 Mar 28;199(8): [PMID: 28167525]
  16. mBio. 2014 Apr 22;5(2):e01074 [PMID: 24757216]
  17. Curr Opin Immunol. 2015 Aug;35:48-54 [PMID: 26091979]
  18. Appl Environ Microbiol. 2017 Jan 17;83(3): [PMID: 27881416]
  19. Genome Res. 2020 Mar;30(3):315-333 [PMID: 32188701]
  20. J Infect Dis. 2014 Apr 1;209(7):978-81 [PMID: 24626532]
  21. Virulence. 2021 Dec;12(1):2608-2632 [PMID: 34590541]
  22. Genome Biol. 2011 Aug 11;12(8):R73 [PMID: 21835008]
  23. mSphere. 2016 May 11;1(3): [PMID: 27303739]
  24. J Clin Microbiol. 2021 Aug 18;59(9):e0291620 [PMID: 33910965]
  25. Emerg Infect Dis. 2021 Jun;27(6):1561-1566 [PMID: 34014152]
  26. Microb Genom. 2020 Mar;6(3): [PMID: 32108565]
  27. Bioinformatics. 2014 May 1;30(9):1312-3 [PMID: 24451623]
  28. mBio. 2017 Feb 7;8(1): [PMID: 28174312]
  29. Emerg Infect Dis. 2018 Jun;24(6):988-994 [PMID: 29774847]
  30. Clin Infect Dis. 2016 Dec 1;63(suppl 4):S181-S186 [PMID: 27838671]
  31. Emerg Infect Dis. 2015 Sep;21(9):1568-73 [PMID: 26291475]
  32. J Clin Microbiol. 2015 Nov;53(11):3418-22 [PMID: 26224847]
  33. Nucleic Acids Res. 2021 Jul 2;49(W1):W293-W296 [PMID: 33885785]
  34. Clin Infect Dis. 2018 Feb 10;66(5):778-788 [PMID: 29040428]
  35. Genetics. 2014 Oct;198(2):473-81 [PMID: 25096321]
  36. mSystems. 2019 Nov 19;4(6): [PMID: 31744907]
  37. Cold Spring Harb Perspect Biol. 2017 Dec 1;9(12): [PMID: 28289064]
  38. Microb Genom. 2018 Feb;4(2): [PMID: 29310749]
  39. J Clin Microbiol. 2015 Jan;53(1):118-23 [PMID: 25355770]
  40. BMC Genomics. 2016 Sep 30;17(1):767 [PMID: 27716057]
  41. J Clin Microbiol. 2011 Dec;49(12):4059-66 [PMID: 21940464]
  42. Nat Commun. 2022 Jul 1;13(1):3807 [PMID: 35778384]
  43. J Bacteriol. 1999 Sep;181(17):5512-5 [PMID: 10464229]
  44. J Clin Microbiol. 2014 Oct;52(10):3549-57 [PMID: 25031439]
  45. J Clin Microbiol. 2021 Apr 20;59(5): [PMID: 33627319]
  46. Sci Transl Med. 2022 Apr 27;14(642):eabn3253 [PMID: 35476597]

MeSH Term

Humans
Bordetella pertussis
Whooping Cough
Phylogeny
Genomics
DNA
Bordetella

Chemicals

DNA

Word Cloud

Created with Highcharts 10.0.0sequencingspecimenscharacterizationsurveillanceisolatesgenomepertussisgenomicDNAreadswhole-genomeWGSmicrobialrecoveredinfectiousculture-independentmethodsclinicalresidualdiagnosticnasopharyngealconcentrationshostdataeithercasesWhole-genomepathogenspatientsdiseasefacilitateshigh-resolutionstrainmolecularepidemiologyHoweverincreasingreliancediagnosediseasesresultedavailablereportnovelapproachcausativeagentparadigminsufficientduelimitedcultureSequencinglibrariesconstructeddirectlypertussis-positivehybridizedbiotinylatedRNA"baits"targetingfragmentswithincomplexmixturescontainedhighbackgroundRecoverysequenceevaluatedmockpoolednegativespikedreducingpurifiedinactivatedcellsTargetedenrichmentincreasedyield90%simultaneouslydecreasingless10%FilteredprovidedsufficientcoverageperformviasinglenucleotidepolymorphismsmultilocustypingMoreoverconcordantsequencedphylogeneticreconstructionsconsistentlyclusteredputativelylinkedoptimizedprotocolsuitableISCt<35>10ngRoutineimplementationstrengthenstudyresurgencecapturingadditionalStrengtheningdirectpositiveBordetellametagenomics

Similar Articles

Cited By (1)