The PKA-CREB1 axis regulates coronavirus proliferation by viral helicase nsp13 association.

Tong Zheng, Beilei Shen, Yu Bai, Entao Li, Xun Zhang, Yong Hu, Ting Gao, Qincai Dong, Lin Zhu, Rui Jin, Hui Shi, Hainan Liu, Yuwei Gao, Xuan Liu, Cheng Cao
Author Information
  1. Tong Zheng: Genetic Engineering Research Laboratory, Beijing Institute of Biotechnology, Beijing, China.
  2. Beilei Shen: Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
  3. Yu Bai: Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China.
  4. Entao Li: Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
  5. Xun Zhang: Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China.
  6. Yong Hu: Genetic Engineering Research Laboratory, Beijing Institute of Biotechnology, Beijing, China.
  7. Ting Gao: Genetic Engineering Research Laboratory, Beijing Institute of Biotechnology, Beijing, China.
  8. Qincai Dong: Genetic Engineering Research Laboratory, Beijing Institute of Biotechnology, Beijing, China.
  9. Lin Zhu: Genetic Engineering Research Laboratory, Beijing Institute of Biotechnology, Beijing, China.
  10. Rui Jin: Genetic Engineering Research Laboratory, Beijing Institute of Biotechnology, Beijing, China.
  11. Hui Shi: Genetic Engineering Research Laboratory, Beijing Institute of Biotechnology, Beijing, China.
  12. Hainan Liu: Genetic Engineering Research Laboratory, Beijing Institute of Biotechnology, Beijing, China. ORCID
  13. Yuwei Gao: Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China. ORCID
  14. Xuan Liu: Genetic Engineering Research Laboratory, Beijing Institute of Biotechnology, Beijing, China. ORCID
  15. Cheng Cao: Genetic Engineering Research Laboratory, Beijing Institute of Biotechnology, Beijing, China. ORCID

Abstract

The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed a worldwide threat in the past 3 years. Although it has been widely and intensively investigated, the mechanism underlying the coronavirus-host interaction requires further elucidation, which may contribute to the development of new antiviral strategies. Here, we demonstrated that the host cAMP-responsive element-binding protein (CREB1) interacts with the non-structural protein 13 (nsp13) of SARS-CoV-2, a conserved helicase for coronavirus replication, both in cells and in lung tissues subjected to SARS-CoV-2 infection. The ATPase and helicase activity of viral nsp13 were shown to be potentiated by CREB1 association, as well as by Protein kinase A (PKA)-mediated CREB1 activation. SARS-CoV-2 replication is significantly suppressed by PKA Cα, cAMP-activated protein kinase catalytic subunit alpha (PRKACA), and CREB1 knockdown or inhibition. Consistently, the CREB1 inhibitor 666-15 has shown significant antiviral effects against both the WIV04 strain and the Omicron strain of the SARS-CoV-2. Our findings indicate that the PKA-CREB1 signaling axis may serve as a novel therapeutic target against coronavirus infection.
IMPORTANCE: In this study, we provide solid evidence that host transcription factor cAMP-responsive element-binding protein (CREB1) interacts directly with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) helicase non-structural protein 13 (nsp13) and potentiate its ATPase and helicase activity. And by live SARS-CoV-2 virus infection, the inhibition of CREB1 dramatically impairs SARS-CoV-2 replication . Notably, the IC50 of CREB1 inhibitor 666-15 is comparable to that of remdesivir. These results may extend to all highly pathogenic coronaviruses due to the conserved nsp13 sequences in the virus.

Keywords

References

  1. Nat Rev Microbiol. 2003 Dec;1(3):209-18 [PMID: 15035025]
  2. Clin Microbiol Rev. 2020 Oct 14;34(1): [PMID: 33055231]
  3. Cell Biosci. 2022 Mar 22;12(1):36 [PMID: 35317858]
  4. Nat Rev Microbiol. 2009 Mar;7(3):226-36 [PMID: 19198616]
  5. Protein J. 2020 Jun;39(3):198-216 [PMID: 32447571]
  6. ACS Pharmacol Transl Sci. 2022 Apr 01;5(4):226-239 [PMID: 35434533]
  7. Structure. 2020 Sep 1;28(9):1071-1081.e3 [PMID: 32649857]
  8. J Biol Chem. 2020 Sep 11;295(37):12910-12934 [PMID: 32661197]
  9. Nat Commun. 2021 Aug 11;12(1):4848 [PMID: 34381037]
  10. Gut. 2005 Sep;54(9):1309-17 [PMID: 15871998]
  11. J Virol. 2022 Jun 22;96(12):e0041222 [PMID: 35652658]
  12. J Virol. 2018 Jan 30;92(4): [PMID: 29212931]
  13. Nature. 2020 Jul;583(7816):459-468 [PMID: 32353859]
  14. Exp Hematol Oncol. 2020 Nov 24;9(1):32 [PMID: 33292604]
  15. Nat Rev Mol Cell Biol. 2001 Aug;2(8):599-609 [PMID: 11483993]
  16. EMBO J. 2001 Mar 15;20(6):1310-9 [PMID: 11250897]
  17. PLoS Pathog. 2021 Mar 12;17(3):e1009439 [PMID: 33711082]
  18. Nat Methods. 2012 Jun 28;9(7):676-82 [PMID: 22743772]
  19. Cells. 2022 Jun 24;11(13): [PMID: 35805104]
  20. Retrovirology. 2013 Dec 17;10:157 [PMID: 24344931]
  21. Nucleic Acids Res. 2019 Jul 9;47(12):6538-6550 [PMID: 31131400]
  22. Nat Commun. 2021 Jan 12;12(1):279 [PMID: 33436624]
  23. Nat Commun. 2022 Apr 26;13(1):2256 [PMID: 35474062]
  24. Signal Transduct Target Ther. 2021 Mar 11;6(1):119 [PMID: 33707416]
  25. Front Immunol. 2022 Feb 07;13:821664 [PMID: 35197985]
  26. Nat Rev Microbiol. 2019 Mar;17(3):181-192 [PMID: 30531947]
  27. Nucleic Acids Res. 2021 Jul 2;49(W1):W431-W437 [PMID: 33956157]
  28. Nat Protoc. 2017 Feb;12(2):255-278 [PMID: 28079879]
  29. PLoS One. 2012;7(5):e36521 [PMID: 22615777]
  30. Adv Virus Res. 2005;64:165-230 [PMID: 16139595]
  31. Adv Second Messenger Phosphoprotein Res. 1997;31:191-204 [PMID: 9344252]
  32. Cell. 2020 Sep 17;182(6):1560-1573.e13 [PMID: 32783916]

MeSH Term

Humans
Adenosine Triphosphatases
Antiviral Agents
Coronavirus RNA-Dependent RNA Polymerase
COVID-19
Cyclic AMP Response Element-Binding Protein
Cyclic AMP-Dependent Protein Kinase Catalytic Subunits
Cyclic AMP-Dependent Protein Kinases
DNA Helicases
Host Microbial Interactions
Inhibitory Concentration 50
RNA Helicases
SARS-CoV-2
Signal Transduction
Viral Nonstructural Proteins
Virus Replication
Female
Animals
Mice

Chemicals

666-15 compound
Adenosine Triphosphatases
Antiviral Agents
Coronavirus RNA-Dependent RNA Polymerase
CREB1 protein, human
Cyclic AMP Response Element-Binding Protein
Cyclic AMP-Dependent Protein Kinase Catalytic Subunits
Cyclic AMP-Dependent Protein Kinases
DNA Helicases
NS13 protein, SARS-CoV-2
PRKACA protein, human
remdesivir
RNA Helicases
Viral Nonstructural Proteins

Word Cloud

Created with Highcharts 10.0.0SARS-CoV-2CREB1nsp13helicasecoronavirusproteinreplicationmayinfectionviralsevereacuterespiratorysyndrome2antiviralhostcAMP-responsiveelement-bindinginteractsnon-structural13conservedATPaseactivityshownassociationkinasePKAinhibitioninhibitor666-15strainPKA-CREB1axisvirusCOVID-19pandemiccausedposedworldwidethreatpast3yearsAlthoughwidelyintensivelyinvestigatedmechanismunderlyingcoronavirus-hostinteractionrequireselucidationcontributedevelopmentnewstrategiesdemonstratedcellslungtissuessubjectedpotentiatedwellProtein-mediatedactivationsignificantlysuppressedcAMP-activatedcatalyticsubunitalphaPRKACAknockdownConsistentlysignificanteffectsWIV04OmicronfindingsindicatesignalingservenoveltherapeutictargetIMPORTANCE:studyprovidesolidevidencetranscriptionfactordirectlypotentiatelivedramaticallyimpairsNotablyIC50comparableremdesivirresultsextendhighlypathogeniccoronavirusesduesequencesregulatesproliferation

Similar Articles

Cited By

No available data.