Near-ultraviolet photon-counting dual-comb spectroscopy.

Bingxin Xu, Zaijun Chen, Theodor W Hänsch, Nathalie Picqué
Author Information
  1. Bingxin Xu: Max-Planck Institute of Quantum Optics, Garching, Germany. ORCID
  2. Zaijun Chen: Max-Planck Institute of Quantum Optics, Garching, Germany. ORCID
  3. Theodor W Hänsch: Max-Planck Institute of Quantum Optics, Garching, Germany. ORCID
  4. Nathalie Picqué: Max-Planck Institute of Quantum Optics, Garching, Germany. nathalie.picque@mpq.mpg.de. ORCID

Abstract

Ultraviolet spectroscopy provides unique insights into the structure of matter with applications ranging from fundamental tests to photochemistry in the Earth's atmosphere and astronomical observations from space telescopes. At longer wavelengths, dual-comb spectroscopy, using two interfering laser frequency combs, has become a powerful technique capable of simultaneously providing a broad spectral range and very high resolution. Here we demonstrate a photon-counting approach that can extend the unique advantages of this method into ultraviolet regions where nonlinear frequency conversion tends to be very inefficient. Our spectrometer, based on two frequency combs with slightly different repetition frequencies, provides a wide-span, high-resolution frequency calibration within the accuracy of an atomic clock, and overall consistency of the spectra. We demonstrate a signal-to-noise ratio at the quantum limit and an optimal use of the measurement time, provided by the multiplexed recording of all spectral data on a single photon-counter. Our initial experiments are performed in the near-ultraviolet and in the visible spectral ranges with alkali-atom vapour, with a power per comb line as low as a femtowatt. This crucial step towards precision broadband spectroscopy at short wavelengths paves the way for extreme-ultraviolet dual-comb spectroscopy, and, more generally, opens up a new realm of applications for photon-level diagnostics, as encountered, for example, when driving single atoms or molecules.

References

  1. Hölsch, N. et al. Benchmarking theory with an improved measurement of the ionization and dissociation energies of H. Phys. Rev. Lett. 122, 103002 (2019). [PMID: 30932670]
  2. Altmann, R. K., Galtier, S., Dreissen, L. S. & Eikema, K. S. E. High-precision Ramsey-comb spectroscopy at deep ultraviolet wavelengths. Phys. Rev. Lett. 117, 173201 (2016). [PMID: 27824468]
  3. Grinin, A. et al. Two-photon frequency comb spectroscopy of atomic hydrogen. Science 370, 1061–1066 (2020). [PMID: 33243883]
  4. Cingöz, A. et al. Direct frequency comb spectroscopy in the extreme ultraviolet. Nature 482, 68–71 (2012). [PMID: 22297971]
  5. Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E. & Schmidt, P. O. Optical atomic clocks. Rev. Mod. Phys. 87, 637–701 (2015). [DOI: 10.1103/RevModPhys.87.637]
  6. Gonzalez Abad, G. et al. Five decades observing Earth’s atmospheric trace gases using ultraviolet and visible backscatter solar radiation from space. J. Quant. Spectrosc. Radiat. Transfer 238, 106478 (2019). [DOI: 10.1016/j.jqsrt.2019.04.030]
  7. Pickering, J. C., Teresa Belmonte, M., Clear, C. P., Liggins, F. & Concepcion-Mairey, F. Recent advances in experimental laboratory astrophysics for stellar astrophysics applications and future data needs. Proc. Int. Astron. Union 15, 220–228 (2019). [DOI: 10.1017/S1743921320000642]
  8. Shkolnik, E. L. On the verge of an astronomy CubeSat revolution. Nat. Astron. 2, 374–378 (2018). [DOI: 10.1038/s41550-018-0438-8]
  9. Picqué, N. & Hänsch, T. W. Frequency comb spectroscopy. Nat. Photon. 13, 146–157 (2019). [DOI: 10.1038/s41566-018-0347-5]
  10. Picqué, N. & Hänsch, T. W. Photon-level broadband spectroscopy and interferometry with two frequency combs. Proc. Natl Acad. Sci. USA 117, 26688 (2020). [PMID: 33055211]
  11. Krausz, F. & Ivanov, M. Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009). [DOI: 10.1103/RevModPhys.81.163]
  12. Vicentini, E., Wang, Z., Van Gasse, K., Hänsch, T. W. & Picqué, N. Dual-comb hyperspectral digital holography. Nat. Photon. 15, 890–894 (2021). [DOI: 10.1038/s41566-021-00892-x]
  13. Benirschke, D. J., Han, N. & Burghoff, D. Frequency comb ptychoscopy. Nat. Commun. 12, 4244 (2021). [PMID: 34244487]
  14. Wildi, T., Voumard, T., Brasch, V., Yilmaz, G. & Herr, T. Photo-acoustic dual-frequency comb spectroscopy. Nat. Commun. 11, 4164 (2020). [PMID: 32820155]
  15. Ycas, G. et al. High-coherence mid-infrared dual-comb spectroscopy spanning 2.6 to 5.2 μm. Nat. Photon. 12, 202–208 (2018). [DOI: 10.1038/s41566-018-0114-7]
  16. Muraviev, A. V., Smolski, V. O., Loparo, Z. E. & Vodopyanov, K. L. Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs. Nat. Photon. 12, 209–214 (2018). [DOI: 10.1038/s41566-018-0135-2]
  17. Dutt, A. et al. On-chip dual-comb source for spectroscopy. Sci. Adv. 4, e1701858 (2018). [PMID: 29511733]
  18. Hase, E. et al. Scan-less confocal phase imaging based on dual-comb microscopy. Optica 5, 634–643 (2018). [DOI: 10.1364/OPTICA.5.000634]
  19. Link, S. M., Maas, D. J. H. C., Waldburger, D. & Keller, U. Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser. Science 356, 1164–1168 (2017). [PMID: 28495879]
  20. Millot, G. et al. Frequency-agile dual-comb spectroscopy. Nat. Photon. 10, 27–30 (2016). [DOI: 10.1038/nphoton.2015.250]
  21. Suh, M.-G., Yang, Q.-F., Yang, K. Y., Yi, X. & Vahala, K. J. Microresonator soliton dual-comb spectroscopy. Science 354, 600–603 (2016). [PMID: 27738017]
  22. Ideguchi, T. et al. Coherent Raman spectro-imaging with laser frequency combs. Nature 502, 355–358 (2013). [PMID: 24132293]
  23. Bernhardt, B. et al. Cavity-enhanced dual-comb spectroscopy. Nat. Photon. 4, 55–57 (2010). [DOI: 10.1038/nphoton.2009.217]
  24. Hänsch, T. W. Nobel Lecture: passion for precision. Rev. Mod. Phys. 78, 1297–1309 (2006). [DOI: 10.1103/RevModPhys.78.1297]
  25. Udem, T., Holzwarth, R. & Hänsch, T. Optical frequency metrology. Nature 416, 233–237 (2002). [PMID: 11894107]
  26. Meek, S. A., Hipke, A., Guelachvili, G., Hänsch, T. W. & Picqué, N. Doppler-free Fourier transform spectroscopy. Opt. Lett. 43, 162–165 (2018). [PMID: 29328222]
  27. Hipke, A., Meek, S. A., Ideguchi, T., Hänsch, T. W. & Picqué, N. Broadband Doppler-limited two-photon and stepwise excitation spectroscopy with laser frequency combs. Phys. Rev. A 90, 011805 (2014). [DOI: 10.1103/PhysRevA.90.011805]
  28. Schuster, V. et al. Ultraviolet dual comb spectroscopy: a roadmap. Opt. Express 29, 21859–21875 (2021). [PMID: 34265964]
  29. Galtier, S., Pivard, C. & Rairoux, P. Towards DCS in the UV spectral range for remote sensing of atmospheric trace gases. Remote Sensing 12, 3444 (2020). [DOI: 10.3390/rs12203444]
  30. Xu, B., Hänsch, T. W. & Picqué, N. Shot-noise-limited near-ultraviolet dual-comb spectroscopy. In CLEO 2023 Technical Digest Series SF3F.5 (Optica Publishing Group, 2023).
  31. Zhang, Y., McCauley, J. & Jones, R. J. Ultraviolet dual-comb spectroscopy utilizing intra-cavity high harmonic generation. In CLEO 2023 Technical Digest Series SF3F.6 (Optica Publishing Group, 2023).
  32. Bernhardt, B. et al. Broadband near-ultraviolet dual comb spectroscopy. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-2760097/v1 (2023).
  33. Xu, B., Hänsch, T. W. & Picqué, N. Near-ultraviolet dual-comb spectroscopy with photon-counting. In Conference on Lasers and Electro-Optics Technical Digest Series SM1D.4 (Optica Publishing Group, 2022).
  34. Liu, Y. W. & Baird, P. E. G. Measurement of the caesium 6S-8P transition frequency. Appl. Phys. B 71, 567–572 (2000). [DOI: 10.1007/s003400000324]
  35. Pupeza, I., Zhang, C., Högner, M. & Ye, J. Extreme-ultraviolet frequency combs for precision metrology and attosecond science. Nat. Photon. 15, 175–186 (2021). [DOI: 10.1038/s41566-020-00741-3]
  36. Chen, Z., Yan, M., Hänsch, T. W. & Picqué, N. A phase-stable dual-comb interferometer. Nat. Commun. 9, 3035 (2018). [PMID: 30072697]
  37. Ubachs, W., Salumbides, E. J., Eikema, K. S. E., de Oliveira, N. & Nahon, L. Novel techniques in VUV high-resolution spectroscopy. J. Electron. Spectrosc. Relat. Phenom. 196, 159–164 (2014). [DOI: 10.1016/j.elspec.2013.11.016]
  38. Thorne, A. Fourier transform spectrometry in the vacuum ultraviolet: applications and progress. Phys. Scr. 1996, 31 (1996). [DOI: 10.1088/0031-8949/1996/T65/004]
  39. Heays, A. N., Lewis, B. R., de Oliveira, N. & Ubachs, W. The spin-forbidden vacuum-ultraviolet absorption spectrum of NN. The. J. Chem. Phys. 151, 224305 (2019). [PMID: 31837671]
  40. de Oliveira, N. et al. High-resolution broad-bandwidth Fourier-transform absorption spectroscopy in the VUV range down to 40 nm. Nat. Photon. 5, 149–153 (2011). [DOI: 10.1038/nphoton.2010.314]
  41. Vernaleken, A. et al. Single-pass high-harmonic generation at 20.8 MHz repetition rate. Opt. Lett. 36, 3428–3430 (2011). [PMID: 21886233]
  42. Ghimire, S. & Reis, D. A. High-harmonic generation from solids. Nat. Phys. 15, 10–16 (2019). [DOI: 10.1038/s41567-018-0315-5]
  43. Martín-Mateos, P., Khan, F. U. & Bonilla-Manrique, O. E. Direct hyperspectral dual-comb imaging. Optica 7, 199–202 (2020). [DOI: 10.1364/OPTICA.382887]
  44. Long, D. A. et al. Multiheterodyne spectroscopy with optical frequency combs generated from a continuous-wave laser. Opt. Lett. 39, 2688–2690 (2014). [PMID: 24784078]
  45. Brault, J. W. in High Resolution in Astronomy, Fifteenth Advanced Course of the Swiss Society of Astronomy and Astrophysics (eds Huber, M. et al.) 3–61 (Geneva Observatory, 1985).
  46. Davis, S. P., Abrams, M. C. & Brault, J. W. Fourier Transform Spectrometry 1–276 (Academic Press, Elsevier, 2001).
  47. Axner, O., Gustafsson, J., Omenetto, N. & Winefordner, J. D. Line strengths, A-factors and absorption cross-sections for fine structure lines in multiplets and hyperfine structure components in lines in atomic spectrometry—a user’s guide. Spectrochim. Acta, Part B 59, 1–39 (2004). [DOI: 10.1016/j.sab.2003.10.002]

Word Cloud

Created with Highcharts 10.0.0spectroscopyfrequencydual-combspectralprovidesuniqueapplicationswavelengthstwocombsdemonstratephoton-countingsingleUltravioletinsightsstructurematterrangingfundamentaltestsphotochemistryEarth'satmosphereastronomicalobservationsspacetelescopeslongerusinginterferinglaserbecomepowerfultechniquecapablesimultaneouslyprovidingbroadrangehighresolutionapproachcanextendadvantagesmethodultravioletregionsnonlinearconversiontendsinefficientspectrometerbasedslightlydifferentrepetitionfrequencieswide-spanhigh-resolutioncalibrationwithinaccuracyatomicclockoverallconsistencyspectrasignal-to-noiseratioquantumlimitoptimalusemeasurementtimeprovidedmultiplexedrecordingdataphoton-counterinitialexperimentsperformednear-ultravioletvisiblerangesalkali-atomvapourpowerpercomblinelowfemtowattcrucialsteptowardsprecisionbroadbandshortpaveswayextreme-ultravioletgenerallyopensnewrealmphoton-leveldiagnosticsencounteredexampledrivingatomsmoleculesNear-ultraviolet

Similar Articles

Cited By