A CTL - Lys immune function maintains insect metamorphosis by preventing gut bacterial dysbiosis and limiting opportunistic infections.

Pei Xiong, Wen-Wen Wang, Xu-Sheng Liu, Yu-Feng Wang, Jia-Lin Wang
Author Information
  1. Pei Xiong: Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China.
  2. Wen-Wen Wang: Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China.
  3. Xu-Sheng Liu: Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China.
  4. Yu-Feng Wang: Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China.
  5. Jia-Lin Wang: Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China. jlwang@ccnu.edu.cn. ORCID

Abstract

BACKGROUND: Gut bacteria are beneficial to the host, many of which must be passed on to host offspring. During metamorphosis, the midgut of holometabolous insects undergoes histolysis and remodeling, and thus risks losing gut bacteria. Strategies employed by holometabolous insects to minimize this risk are obscure. How gut bacteria affect host insects after entering the hemocoel and causing opportunistic infections remains largely elusive.
RESULTS: We used holometabolous Helicoverpa armigera as a model and found low Lactobacillus load, high level of a C-type lectin (CTL) gene CD209 antigen-like protein 2 (CD209) and its downstream lysozyme 1 (Lys1) in the midgut of the wandering stage. CD209 or Lys1 depletion increased the load of midgut Lactobacillus, which further translocate to the hemocoel. In particular, CD209 or Lys1 depletion, injection of Lactobacillus plantarum, or translocation of midgut L. plantarum into the hemocoel suppressed 20-hydroxyecdysone (20E) signaling and delayed pupariation. Injection of L. plantarum decreased triacylglycerol and cholesterol storage, which may result in insufficient energy and 20E available for pupariation. Further, Lysine-type peptidoglycan, the major component of gram-positive bacterial cell wall, contributed to delayed pupariation and decreased levels of triacylglycerols, cholesterols, and 20E, in both H. armigera and Drosophila melanogaster.
CONCLUSIONS: A mechanism by which (Lactobacillus-induced) opportunistic infections delay insect metamorphosis was found, namely by disturbing the homeostasis of lipid metabolism and reducing 20E production. Moreover, the immune function of CTL - Lys was characterized for insect metamorphosis by maintaining gut homeostasis and limiting the opportunistic infections.

Keywords

References

  1. Ann N Y Acad Sci. 1994 Apr 15;712:117-30 [PMID: 8192326]
  2. PLoS Pathog. 2022 Nov 23;18(11):e1010967 [PMID: 36417479]
  3. J Biol Chem. 1998 Oct 9;273(41):26755-64 [PMID: 9756919]
  4. Dev Comp Immunol. 2016 Aug;61:225-35 [PMID: 27068761]
  5. EMBO J. 2013 May 29;32(11):1626-38 [PMID: 23652443]
  6. Dev Comp Immunol. 2022 Jun;131:104379 [PMID: 35231466]
  7. Nat Microbiol. 2016 Mar 14;1:16023 [PMID: 27572642]
  8. Mol Biochem Parasitol. 2018 Sep;224:6-16 [PMID: 30016698]
  9. Insect Mol Biol. 2006 Dec;15(6):823-34 [PMID: 17201774]
  10. PLoS One. 2015 Mar 18;10(3):e0119618 [PMID: 25786260]
  11. Science. 2011 Nov 4;334(6056):670-4 [PMID: 22053049]
  12. Pest Manag Sci. 2023 Jan;79(1):437-446 [PMID: 36177945]
  13. Development. 2002 May;129(9):2259-69 [PMID: 11959833]
  14. Proc Natl Acad Sci U S A. 2009 Dec 8;106(49):20853-8 [PMID: 19861550]
  15. J Lipid Res. 2009 Apr;50 Suppl:S69-73 [PMID: 18955729]
  16. Autophagy. 2019 Aug;15(8):1478-1480 [PMID: 31084464]
  17. mBio. 2021 Aug 31;12(4):e0082421 [PMID: 34253067]
  18. Integr Zool. 2021 May;16(3):313-323 [PMID: 33704889]
  19. J Biol Chem. 1998 Apr 17;273(16):9829-36 [PMID: 9545322]
  20. Insect Sci. 2023 Oct;30(5):1363-1377 [PMID: 36518010]
  21. Pest Manag Sci. 2020 Dec;76(12):3965-3974 [PMID: 32519818]
  22. Annu Rev Entomol. 2019 Jan 7;64:315-333 [PMID: 30312553]
  23. PLoS One. 2012;7(8):e43769 [PMID: 22937093]
  24. J Biol Chem. 2014 May 9;289(19):13026-41 [PMID: 24692553]
  25. Curr Opin Insect Sci. 2020 Oct;41:100-105 [PMID: 32898765]
  26. PLoS Genet. 2021 Nov 29;17(11):e1009916 [PMID: 34843450]
  27. Cell Host Microbe. 2018 Feb 14;23(2):215-228.e4 [PMID: 29398649]
  28. Int J STD AIDS. 2013 Aug;24(8):603-11 [PMID: 23970578]
  29. J Med Entomol. 2001 Jan;38(1):29-32 [PMID: 11268687]
  30. J Lipid Res. 2010 Dec;51(12):3559-67 [PMID: 20805092]
  31. Dev Comp Immunol. 2012 Jun;37(2):221-32 [PMID: 22516747]
  32. J Mol Med (Berl). 2017 Jan;95(1):13-20 [PMID: 27639584]
  33. Cell Metab. 2011 Sep 7;14(3):403-14 [PMID: 21907145]
  34. Insect Biochem Mol Biol. 2021 Jun;133:103469 [PMID: 32931938]
  35. J Insect Physiol. 2011 Oct;57(10):1437-45 [PMID: 21810426]
  36. BMC Dev Biol. 2007 Jun 28;7:76 [PMID: 17597546]
  37. J Bacteriol. 1986 Jun;166(3):779-86 [PMID: 3011744]
  38. Dev Comp Immunol. 2020 Jul;108:103688 [PMID: 32222357]
  39. Ecol Evol. 2021 Feb 15;11(6):2515-2523 [PMID: 33767818]
  40. PLoS Pathog. 2020 Sep 30;16(9):e1008901 [PMID: 32997722]
  41. Cell Microbiol. 2014 Jul;16(7):1014-23 [PMID: 24779390]
  42. Proc Natl Acad Sci U S A. 2017 Jun 6;114(23):5994-5999 [PMID: 28533370]
  43. BMC Microbiol. 2010 Dec 01;10:308 [PMID: 21122115]
  44. Cell. 2006 Feb 24;124(4):783-801 [PMID: 16497588]
  45. BMC Biol. 2024 Mar 6;22(1):54 [PMID: 38448930]
  46. J Immunol. 2006 Jul 1;177(1):519-26 [PMID: 16785549]
  47. Dev Comp Immunol. 2016 Aug;61:60-9 [PMID: 26997372]
  48. Philos Trans R Soc Lond B Biol Sci. 2019 Oct 14;374(1783):20190068 [PMID: 31438811]
  49. Proc Natl Acad Sci U S A. 2019 Aug 6;116(32):15991-15996 [PMID: 31332013]
  50. Dev Comp Immunol. 2018 Apr;81:252-261 [PMID: 29247722]
  51. Cell. 2014 Jan 16;156(1-2):109-22 [PMID: 24439372]
  52. PLoS Pathog. 2018 Feb 28;14(2):e1006899 [PMID: 29489896]
  53. Proc Natl Acad Sci U S A. 2017 Mar 28;114(13):E2709-E2718 [PMID: 28292900]
  54. Curr Top Dev Biol. 2013;105:1-36 [PMID: 23962837]
  55. Dev Comp Immunol. 2022 Feb;127:104309 [PMID: 34748796]
  56. mBio. 2011 May 17;2(3):e00065-11 [PMID: 21586646]
  57. J Insect Physiol. 2019 Aug - Sep;117:103898 [PMID: 31211963]
  58. Nat Metab. 2022 Aug;4(8):1041-1054 [PMID: 35999469]
  59. PLoS Genet. 2020 Nov 23;16(11):e1009192 [PMID: 33227003]
  60. PLoS Pathog. 2015 Nov 06;11(11):e1005246 [PMID: 26544881]
  61. Arch Insect Biochem Physiol. 1991;17(2-3):67-80 [PMID: 1802032]
  62. PLoS One. 2017 May 17;12(5):e0176689 [PMID: 28520752]

Grants

  1. 31872301/National Natural Science Foundation of China
  2. 32172489/National Natural Science Foundation of China

MeSH Term

Animals
Lysine
Drosophila melanogaster
Dysbiosis
Gastrointestinal Microbiome
Bacteria
Immunity

Chemicals

Lysine

Word Cloud

Created with Highcharts 10.0.0metamorphosismidgutgutopportunisticinfectionsCD20920EbacteriahostholometabolousinsectshemocoelLactobacillusLys1plantarumpupariationinsectarmigerafoundloadC-typelectindepletionLdelayeddecreasedbacterialhomeostasismetabolismimmunefunctionCTL - LyslimitingBACKGROUND:GutbeneficialmanymustpassedoffspringundergoeshistolysisremodelingthusriskslosingStrategiesemployedminimizeriskobscureaffectenteringcausingremainslargelyelusiveRESULTS:usedHelicoverpamodellowhighlevelCTLgeneantigen-likeprotein2downstreamlysozyme1wanderingstageincreasedtranslocateparticularinjectiontranslocationsuppressed20-hydroxyecdysonesignalingInjectiontriacylglycerolcholesterolstoragemayresultinsufficientenergyavailableLysine-typepeptidoglycanmajorcomponentgram-positivecellwallcontributedlevelstriacylglycerolscholesterolsHDrosophilamelanogasterCONCLUSIONS:mechanismLactobacillus-induceddelaynamelydisturbinglipidreducingproductionMoreovercharacterizedmaintainingmaintainspreventingdysbiosisEcdysoneLipidLysozymePupariation

Similar Articles

Cited By