Transient stimulated Raman scattering spectroscopy and imaging.

Qiaozhi Yu, Zhengjian Yao, Jiaqi Zhou, Wenhao Yu, Chenjie Zhuang, Yafeng Qi, Hanqing Xiong
Author Information
  1. Qiaozhi Yu: National Biomedical Imaging Center, College of Future Technology, Peking University, Beijing, 100871, China.
  2. Zhengjian Yao: National Biomedical Imaging Center, College of Future Technology, Peking University, Beijing, 100871, China.
  3. Jiaqi Zhou: National Biomedical Imaging Center, College of Future Technology, Peking University, Beijing, 100871, China.
  4. Wenhao Yu: Biomedical Engineering Department, College of Future Technology, Peking University, Beijing, 100871, China.
  5. Chenjie Zhuang: Biomedical Engineering Department, College of Future Technology, Peking University, Beijing, 100871, China.
  6. Yafeng Qi: National Biomedical Imaging Center, College of Future Technology, Peking University, Beijing, 100871, China.
  7. Hanqing Xiong: National Biomedical Imaging Center, College of Future Technology, Peking University, Beijing, 100871, China. xiong.hanqing@pku.edu.cn. ORCID

Abstract

Stimulated Raman scattering (SRS) has been developed as an essential quantitative contrast for chemical imaging in recent years. However, while spectral lines near the natural linewidth limit can be routinely achieved by state-of-the-art spontaneous Raman microscopes, spectral broadening is inevitable for current mainstream SRS imaging methods. This is because those SRS signals are all measured in the frequency domain. There is a compromise between sensitivity and spectral resolution: as the nonlinear process benefits from pulsed excitations, the fundamental time-energy uncertainty limits the spectral resolution. Besides, the spectral range and acquisition speed are mutually restricted. Here we report transient stimulated Raman scattering (T-SRS), an alternative time-domain strategy that bypasses all these fundamental conjugations. T-SRS is achieved by quantum coherence manipulation: we encode the vibrational oscillations in the stimulated Raman loss (SRL) signal by femtosecond pulse-pair sequence excited vibrational wave packet interference. The Raman spectrum was then achieved by Fourier transform of the time-domain SRL signal. Since all Raman modes are impulsively and simultaneously excited, T-SRS features the natural-linewidth-limit spectral line shapes, laser-bandwidth-determined spectral range, and improved sensitivity. With ~150-fs laser pulses, we boost the sensitivity of typical Raman modes to the sub-mM level. With all-plane-mirror high-speed time-delay scanning, we further demonstrated hyperspectral SRS imaging of live-cell metabolism and high-density multiplexed imaging with the natural-linewidth-limit spectral resolution. T-SRS shall find valuable applications for advanced Raman imaging.

References

  1. Cheng, J.-X. & Xie, X. S. Vibrational spectroscopic imaging of living systems: an emerging platform for biology and medicine. Science 350, eaaa8870 (2015). [DOI: 10.1126/science.aaa8870]
  2. Hill, A. H. & Fu, D. Cellular imaging using stimulated Raman scattering microscopy. Anal. Chem. 91, 9333–9342 (2019). [PMID: 31287649]
  3. Hu, F. H., Shi, L. X. & Min, W. Biological imaging of chemical bonds by stimulated Raman scattering microscopy. Nat. methods 16, 830–842 (2019). [PMID: 31471618]
  4. Lin, H. N. & Cheng, J.-X. Computational coherent Raman scattering imaging: breaking physical barriers by fusion of advanced instrumentation and data science. eLight 3, 1–19 (2023). [DOI: 10.1186/s43593-022-00038-8]
  5. Hübner, H. J. et al. Subpicosecond vibrational relaxation of skeletal modes in polyatomic molecules. Chem. Phys. Lett. 182, 315–320 (1991). [DOI: 10.1016/0009-2614(91)80221-I]
  6. Freudiger, C. W. et al. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science 322, 1857–1861 (2008). [PMID: 19095943]
  7. Ozeki, Y. et al. High-speed molecular spectral imaging of tissue with stimulated Raman scattering. Nat. Photonics 6, 845–851 (2012). [DOI: 10.1038/nphoton.2012.263]
  8. Fu, D. et al. Hyperspectral imaging with stimulated raman scattering by chirped femtosecond lasers. J. Phys. Chem. B 117, 4634–4640 (2013). [PMID: 23256635]
  9. Freudiger, C. W. et al. Highly specific label-free molecular imaging with spectrally tailored excitation-stimulated Raman scattering (STE-SRS) microscopy. Nat. Photonics 5, 103–109 (2011). [PMID: 23015809]
  10. Liao, C.-S. et al. Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy. Light Sci. Appl. 4, e265 (2015). [PMID: 26167336]
  11. Wei, L. et al. Live-cell imaging of alkyne-tagged small biomolecules by stimulated Raman scattering. Nat. Methods 11, 410–412 (2014). [PMID: 24584195]
  12. Krafft, C. et al. Developments in spontaneous and coherent Raman scattering microscopic imaging for biomedical applications. Chem. Soc. Rev. 45, 1818–1849 (2016). [DOI: 10.1039/C5CS00564G]
  13. Yamakoshi, H. et al. Alkyne-tag Raman imaging for visualization of mobile small molecules in live cells. J. Am. Chem. Soc. 134, 20681–20689 (2012). [PMID: 23198907]
  14. Wei, L. et al. Super-multiplex vibrational imaging. Nature 544, 465–470 (2017). [PMID: 28424513]
  15. Hu, F. H. et al. Supermultiplexed optical imaging and barcoding with engineered polyynes. Nat. methods 15, 194–200 (2018). [PMID: 29334378]
  16. Shi, L. X., Hu, F. & Min, W. Optical mapping of biological water in single live cells by stimulated Raman excited fluorescence microscopy. Nat. Commun. 10, 1–8 (2019). [DOI: 10.1038/s41467-019-12708-2]
  17. Xiong, H. Q. et al. Strong electric field observed at the interface of aqueous microdroplets. J. Phys. Chem. Lett. 11, 7423–7428 (2020). [PMID: 32804510]
  18. Bi, X. T., Miao, K. & Wei, L. Alkyne-tagged Raman probes for local environmental sensing by hydrogen–deuterium exchange. J. Am. Chem. Soc. 144, 8504–8514 (2022). [PMID: 35508077]
  19. Pollard, W. T. & Mathies, R. A. Analysis of femtosecond dynamic absorption spectra of nonstationary states. Annu. Rev. Phys. Chem. 43, 497–523 (1992). [PMID: 1463575]
  20. Ruhman, S., Joly, A. G. & Nelson, K. A. Coherent molecular vibrational motion observed in the time domain through impulsive stimulated Raman scattering. IEEE J. Quantum Electron. 24, 460–469 (1988). [DOI: 10.1109/3.146]
  21. Weiner, A. M. et al. Femtosecond multiple-pulse impulsive stimulated Raman scattering spectroscopy. J. Opt. Soc. Am. B 8, 1264–1275 (1991). [DOI: 10.1364/JOSAB.8.001264]
  22. Oron, D., Raanan, D. & Soffer, Y. Impulsive SRS microscopy. In Stimulated Raman Scattering Microscopy (eds Cheng, J. X. et al.) Ch. 7, 99–113 (Elsevier, Amsterdam, 2022).
  23. Raanan, D. et al. Sub-second hyper-spectral low-frequency vibrational imaging via impulsive Raman excitation. Opt. Lett. 44, 5153–5156 (2019). [PMID: 31674954]
  24. Ogilvie, J. P. et al. Fourier-transform coherent anti-Stokes Raman scattering microscopy. Opt. Lett. 31, 480–482 (2006). [PMID: 16496893]
  25. Ideguchi, T. et al. Coherent Raman spectro-imaging with laser frequency combs. Nature 502, 355–358 (2013). [PMID: 24132293]
  26. Dudovich, N., Oron, D. & Silberberg, Y. Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy. Nature 418, 512–514 (2002). [PMID: 12152073]
  27. Kukura, P., McCamant, D. W. & Mathies, R. A. Femtosecond stimulated Raman spectroscopy. Annu. Rev. Phys. Chem. 58, 461–488 (2007). [PMID: 17105414]
  28. Whaley-Mayda, L., Penwell, S. B. & Tokmakoff, A. Fluorescence encoded infrared spectroscopy: ultrafast vibrational spectroscopy on small ensembles of molecules in solution. J. Phys. Chem. Lett. 10, 1967–1972 (2019). [PMID: 30942587]
  29. Yu, Q. Z. et al. Transient stimulated raman excited fluorescence spectroscopy. J. Am. Chem. Soc. 145, 7758–7762 (2023). [PMID: 36995255]
  30. Prince, R. C., Frontiera, R. R. & Potma, E. O. Stimulated Raman scattering: from bulk to nano. Chem. Rev. 117, 5070–5094 (2016). [PMID: 27966347]
  31. Shivkumar, S. et al. Selective detection in impulsive low-frequency Raman imaging using shaped probe pulses. Phys. Rev. Appl. 19, 054075 (2023). [DOI: 10.1103/PhysRevApplied.19.054075]
  32. Beatty, K. E. et al. Fluorescence visualization of newly synthesized proteins in mammalian cells. Angew. Chem. 118, 7524–7527 (2006). [DOI: 10.1002/ange.200602114]
  33. Salic, A. & Mitchison, T. J. A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc. Natl Acad. Sci. USA 105, 2415–2420 (2008). [PMID: 18272492]
  34. Camp et al. High-speed coherent Raman fingerprint imaging of biological tissues. Nat. photonics 8, 627–634 (2014). [PMID: 25621002]
  35. Zhang, D. L. et al. Spectrally modulated stimulated Raman scattering imaging with an angle-to-wavelength pulse shaper. Opt. Express 21, 13864–13874 (2013). [PMID: 23736639]
  36. Schubert, O. et al. Rapid-scan acousto-optical delay line with 34 kHz scan rate and 15 as precision. Opt. Lett. 38, 2907–2910 (2013). [PMID: 23903176]
  37. Liao, C.-S. et al. Stimulated Raman spectroscopic imaging by microsecond delay-line tuning. Optica 3, 1377–1380 (2016). [DOI: 10.1364/OPTICA.3.001377]
  38. Tamamitsu, M. et al. Ultrafast broadband Fourier-transform CARS spectroscopy at 50,000 spectra/s enabled by a scanning Fourier-domain delay line. Vib. Spectrosc. 91, 163–169 (2017). [DOI: 10.1016/j.vibspec.2016.07.007]
  39. Lu, F.-K. et al. Label-free DNA imaging in vivo with stimulated Raman scattering microscopy. Proc. Natl Acad. Sci. 112, 11624–11629 (2015). [PMID: 26324899]
  40. Palonpon, A. F., Sodeoka, M. & Fujita, K. Molecular imaging of live cells by Raman microscopy. Curr. Opin. Chem. Biol. 17, 708–715 (2013). [PMID: 23773582]
  41. Fu, D. et al. In vivo metabolic fingerprinting of neutral lipids with hyperspectral stimulated Raman scattering microscopy. J. Am. Chem. Soc. 136, 8820–8828 (2014). [PMID: 24869754]
  42. Zhao, Z. L. et al. Applications of vibrational tags in biological imaging by Raman microscopy. Analyst 142, 4018–4029 (2017). [PMID: 28875184]
  43. Shen, Y. H. et al. Metabolic activity induces membrane phase separation in endoplasmic reticulum. Proc. Natl Acad. Sci. USA 114, 13394–13399 (2017). [PMID: 29196526]
  44. Zhao, Z. L. et al. Ultra-bright Raman dots for multiplexed optical imaging. Nat. Commun. 12, 1–12 (2021).
  45. Lee, J. H. et al. Dye-labeled polystyrene latex microspheres prepared via a combined swelling-diffusion technique. J. Colloid Interface Sci. 363, 137–144 (2011). [PMID: 21839463]
  46. Zhou, B. et al. Controlling upconversion nanocrystals for emerging applications. Nat. Nanotechnol. 10, 924–936 (2015). [PMID: 26530022]
  47. Humar, M. & Hyun Yun, S. Intracellular microlasers. Nat. Photonics 9, 572–576 (2015). [PMID: 26417383]
  48. Haukanes, B.-I. & Kvam, C. Application of magnetic beads in bioassays. Bio/Technol. 11, 60–63 (1993).
  49. Fan, Y., Wang, S. F. & Zhang, F. Optical multiplexed bioassays for improved biomedical diagnostics. Angew. Chem. 131, 13342–13353 (2019). [DOI: 10.1002/ange.201901964]
  50. Hook, A. L. et al. High throughput methods applied in biomaterial development and discovery. Biomaterials 31, 187–198 (2010). [PMID: 19815273]
  51. Situma, C., Hashimoto, M. & Soper, S. A. Merging microfluidics with microarray-based bioassays. Biomol. Eng. 23, 213–231 (2006). [PMID: 16905357]
  52. Fleming, G. R. Chemical Applications of Ultrafast Spectroscopy (Oxford University Press, 1986).
  53. Hamm, P. & Zanni, M. Concepts and Methods of 2D Infrared Spectroscopy (Cambridge University Press, 2011).

Grants

  1. 62275004/National Natural Science Foundation of China (National Science Foundation of China)

Word Cloud

Created with Highcharts 10.0.0RamanspectralimagingSRST-SRSscatteringachievedsensitivitystimulatedfundamentalresolutionrangetime-domainvibrationalSRLsignalexcitedmodesnatural-linewidth-limitStimulateddevelopedessentialquantitativecontrastchemicalrecentyearsHoweverlinesnearnaturallinewidthlimitcanroutinelystate-of-the-artspontaneousmicroscopesbroadeninginevitablecurrentmainstreammethodssignalsmeasuredfrequencydomaincompromiseresolution:nonlinearprocessbenefitspulsedexcitationstime-energyuncertaintylimitsBesidesacquisitionspeedmutuallyrestrictedreporttransientalternativestrategybypassesconjugationsquantumcoherencemanipulation:encodeoscillationslossfemtosecondpulse-pairsequencewavepacketinterferencespectrumFouriertransformSinceimpulsivelysimultaneouslyfeatureslineshapeslaser-bandwidth-determinedimproved~150-fslaserpulsesboosttypicalsub-mMlevelall-plane-mirrorhigh-speedtime-delayscanningdemonstratedhyperspectrallive-cellmetabolismhigh-densitymultiplexedshallfindvaluableapplicationsadvancedTransientspectroscopy

Similar Articles

Cited By (3)