Analysis of Recurrent Times-to-Clinical Malaria Episodes and Parasitemia: A Joint Modeling Approach Applied to a Cohort Data.

Christopher C Stanley, Mavuto Mukaka, Lawrence N Kazembe, Andrea G Buchwald, Don P Mathanga, Miriam K Laufer, Tobias F Chirwa
Author Information
  1. Christopher C Stanley: Faculty of Health Sciences, School of Public Health, University of the Witwatersrand, Johannesburg, South Africa.
  2. Mavuto Mukaka: Oxford Centre for Tropical Medicine and Global Health, Oxford, United Kingdom.
  3. Lawrence N Kazembe: Department of Statistics, University of Namibia, Windhoek, Namibia.
  4. Andrea G Buchwald: Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States.
  5. Don P Mathanga: Malaria Alert Center, Kamuzu University of Health Sciences, Blantyre, Malawi.
  6. Miriam K Laufer: Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States.
  7. Tobias F Chirwa: Faculty of Health Sciences, School of Public Health, University of the Witwatersrand, Johannesburg, South Africa.

Abstract

Background: Recurrent clinical malaria episodes due to parasite infection are common in endemic regions. With each infection, acquired immunity develops, making subsequent disease episodes less likely. To capture the effect of acquired immunity to malaria, it may be necessary to model recurrent clinical disease episodes jointly with parasitemia data. A joint model of longitudinal parasitemia and time-to-first clinical malaria episode (single-event joint model) may be inaccurate because acquired immunity is lost when subsequent episodes are excluded. This study's informativeness assessed whether joint modeling of recurrent clinical malaria episodes and parasitemia is more accurate than a single-event joint model where the subsequent episodes are ignored.
Methods: The single event joint model comprised Cox Proportional Hazards (PH) sub-model for time-to-first clinical malaria episode and Negative Binomial (NB) mixed-effects sub-model for the longitudinal parasitemia. The recurrent events joint model extends the survival sub-model to a Gamma shared frailty model to include all recurrent clinical episodes. The models were applied to cohort data from Malawi. Simulations were also conducted to assess the performance of the model under different conditions.
Results: The recurrent events joint model, which yielded higher hazard ratios of clinical malaria, was more precise and in most cases produced smaller standard errors than the single-event joint model; hazard ratio (HR) = 1.42, [95% confidence interval [CI]: 1.22, 2.03] vs. HR = 1.29, [95% CI:1.60, 2.45] among participants who reported not to use LLINs every night compared to those who used the nets every night; HR = 0.96, [ 95% CI: 0.94, 0.98] vs. HR = 0.81, [95% CI: 0.75, 0.88] for each 1-year increase in participants' age; and HR = 1.36, [95% CI: 1.05, 1.75] vs. HR = 1.10, [95% CI: 0.83, 4.11] for observations during the rainy season compared to the dry season.
Conclusion: The recurrent events joint model in this study provides a way of estimating the risk of recurrent clinical malaria in a cohort where the effect of immunity on malaria disease acquired due to parasitemia with aging is captured. The simulation study has shown that if correctly specified, the recurrent events joint model can give risk estimates with low bias.

Keywords

References

  1. Control Clin Trials. 2002 Dec;23(6):626-34 [PMID: 12505241]
  2. Biometrics. 2007 Jun;63(2):389-97 [PMID: 17688491]
  3. PLoS Med. 2007 Jul 31;4(7):e242 [PMID: 17676985]
  4. J Am Stat Assoc. 2001;96(455): [PMID: 24204084]
  5. Int J Parasitol. 2011 Mar;41(3-4):293-300 [PMID: 20974145]
  6. Stat Med. 1995 Jul 15;14(13):1447-61 [PMID: 7481183]
  7. Malar J. 2009 Feb 10;8:23 [PMID: 19208236]
  8. J Med Stat Inform. 2019;7: [PMID: 31245015]
  9. BMC Med Res Methodol. 2016 Sep 07;16(1):117 [PMID: 27604810]
  10. Stat Methods Med Res. 2014 Feb;23(1):74-90 [PMID: 22517270]
  11. Elife. 2018 Jan 23;7: [PMID: 29357976]
  12. Nature. 1961 Nov 25;192:733-7 [PMID: 13880318]
  13. Clin Infect Dis. 2019 Jan 1;68(1):106-112 [PMID: 29788054]
  14. Stat Med. 2015 Jun 30;34(14):2181-95 [PMID: 24634327]
  15. Am J Epidemiol. 2019 Jan 1;188(1):169-176 [PMID: 30252032]
  16. Mediterr J Hematol Infect Dis. 2012;4(1):e2012026 [PMID: 22708041]
  17. Infect Immun. 2004 Nov;72(11):6538-45 [PMID: 15501785]
  18. Malar J. 2014 Jul 29;13:293 [PMID: 25073652]
  19. Biom J. 2013 Jul;55(4):572-88 [PMID: 23606452]
  20. Biometrics. 2006 Dec;62(4):1037-43 [PMID: 17156277]
  21. Am J Trop Med Hyg. 2019 Aug;101(2):412-415 [PMID: 31219007]
  22. Am J Trop Med Hyg. 2013 Nov;89(5):840-849 [PMID: 24062477]
  23. Biometrics. 2003 Jun;59(2):221-8 [PMID: 12926706]
  24. Stat Med. 2014 Nov 20;33(26):4560-76 [PMID: 24947785]
  25. Stat Med. 2016 Oct 30;35(24):4306-4319 [PMID: 27241902]
  26. Biostatistics. 2000 Dec;1(4):465-80 [PMID: 12933568]
  27. Stat Methods Med Res. 2002 Feb;11(1):25-48 [PMID: 11923992]
  28. Scand J Immunol. 2008 Feb;67(2):177-84 [PMID: 18086262]
  29. Stat Med. 2016 Sep 30;35(22):3933-48 [PMID: 27090611]
  30. Stat Med. 2007 Dec 20;26(29):5285-302 [PMID: 17542002]
  31. Clin Microbiol Rev. 2009 Jan;22(1):13-36, Table of Contents [PMID: 19136431]
  32. BMC Med Res Methodol. 2016 Dec 5;16(1):168 [PMID: 27919221]
  33. Biometrics. 2002 Dec;58(4):742-53 [PMID: 12495128]
  34. Biomed Res Int. 2018 Jan 9;2018:7409284 [PMID: 29546067]
  35. BMC Med Res Methodol. 2019 Dec 3;19(1):222 [PMID: 31795933]
  36. Biometrics. 2006 Jun;62(2):432-45 [PMID: 16918907]
  37. Stat Med. 2018 Aug 15;37(18):2771-2786 [PMID: 29682772]
  38. Parasite Immunol. 2006 Jan-Feb;28(1-2):51-60 [PMID: 16438676]
  39. BMC Bioinformatics. 2017 Jan 3;18(1):4 [PMID: 28049409]
  40. Stat Methods Med Res. 1994;3(3):244-62 [PMID: 7820294]
  41. PLoS One. 2015 Jul 24;10(7):e0134061 [PMID: 26207758]
  42. Stat Med. 2019 May 20;38(11):2074-2102 [PMID: 30652356]
  43. Int J Biostat. 2018 Jan 31;14(1): [PMID: 29389664]

Word Cloud

Created with Highcharts 10.0.0modeljointmalariaclinicalrecurrentepisodes10parasitemiaHR=[95%acquiredimmunityeventsCI:subsequentdiseasedatalongitudinalsingle-eventsub-modelvsRecurrentdueinfectioneffectmaytime-to-firstepisodemodelingmixed-effectssharedfrailtycohorthazard2everynightcomparedseasonstudyriskBackground:parasitecommonendemicregionsdevelopsmakinglesslikelycapturenecessaryjointlyinaccuratelostexcludedstudy'sinformativenessassessedwhetheraccurateignoredMethods:singleeventcomprisedCoxProportionalHazardsPHNegativeBinomialNBextendssurvivalGammaincludemodelsappliedMalawiSimulationsalsoconductedassessperformancedifferentconditionsResults:yieldedhigherratiosprecisecasesproducedsmallerstandarderrorsratio42confidenceinterval[CI]:2203]29CI:16045]amongparticipantsreporteduseLLINsusednets96[95%9498]817588]1-yearincreaseparticipants'age360575]1083411]observationsrainydryConclusion:provideswayestimatingagingcapturedsimulationshowncorrectlyspecifiedcangiveestimateslowbiasAnalysisTimes-to-ClinicalMalariaEpisodesParasitemia:JointModelingApproachAppliedCohortDataPlasmodiumfalciparumcoxproportionalhazards

Similar Articles

Cited By