A haplotype-resolved genome provides insight into allele-specific expression in wild walnut (Juglans regia L.).

Liqun Han, Xiang Luo, Yu Zhao, Ning Li, Yuhui Xu, Kai Ma
Author Information
  1. Liqun Han: Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, the State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China.
  2. Xiang Luo: College of Agriculture, Henan University, Zhengzhou, China.
  3. Yu Zhao: Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, the State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China.
  4. Ning Li: Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, the State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China.
  5. Yuhui Xu: Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, the State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China. genetics_2010@163.com. ORCID
  6. Kai Ma: Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, the State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, China. sunshine002mk@163.com.

Abstract

Wild germplasm resources are crucial for gene mining and molecular breeding because of their special trait performance. Haplotype-resolved genome is an ideal solution for fully understanding the biology of subgenomes in highly heterozygous species. Here, we surveyed the genome of a wild walnut tree from Gongliu County, Xinjiang, China, and generated a haplotype-resolved reference genome of 562.99 Mb (contig N50 = 34.10 Mb) for one haplotype (hap1) and 561.07 Mb (contig N50 = 33.91 Mb) for another haplotype (hap2) using PacBio high-fidelity (HiFi) reads and Hi-C technology. Approximately 527.20 Mb (93.64%) of hap1 and 526.40 Mb (93.82%) of hap2 were assigned to 16 pseudochromosomes. A total of 41039 and 39744 protein-coding gene models were predicted for hap1 and hap2, respectively. Moreover, 123 structural variations (SVs) were identified between the two haplotype genomes. Allele-specific expression genes (ASEGs) that respond to cold stress were ultimately identified. These datasets can be used to study subgenome evolution, for functional elite gene mining and to discover the transcriptional basis of specific traits related to environmental adaptation in wild walnut.

References

  1. Mol Plant. 2019 Mar 4;12(3):447-460 [PMID: 30802553]
  2. Plant Biotechnol J. 2021 Sep;19(9):1690-1692 [PMID: 34170607]
  3. Nat Commun. 2023 Feb 4;14(1):617 [PMID: 36739280]
  4. Food Chem. 2008 Nov 15;111(2):421-7 [PMID: 26047445]
  5. J Mol Biol. 1990 Oct 5;215(3):403-10 [PMID: 2231712]
  6. Nucleic Acids Res. 2018 Nov 30;46(21):e126 [PMID: 30107434]
  7. Nat Genet. 2021 Aug;53(8):1250-1259 [PMID: 34267370]
  8. Nat Protoc. 2016 Sep;11(9):1650-67 [PMID: 27560171]
  9. Bioinformatics. 2009 Jul 15;25(14):1754-60 [PMID: 19451168]
  10. Science. 2009 Oct 9;326(5950):289-93 [PMID: 19815776]
  11. Plant Biotechnol J. 2022 Jul;20(7):1285-1297 [PMID: 35258172]
  12. Crit Rev Food Sci Nutr. 2022;62(19):5113-5129 [PMID: 33567903]
  13. Curr Protoc Bioinformatics. 2004 May;Chapter 4:Unit 4.10 [PMID: 18428725]
  14. Nucleic Acids Res. 2004 Jan 1;32(Database issue):D138-41 [PMID: 14681378]
  15. Gigascience. 2022 Mar 24;11: [PMID: 35333302]
  16. Nucleic Acids Res. 2012 Apr;40(7):e49 [PMID: 22217600]
  17. BMC Genomics. 2015 Aug 18;16:614 [PMID: 26283231]
  18. Bioinformatics. 2017 Jul 15;33(14):2202-2204 [PMID: 28369201]
  19. BMC Bioinformatics. 2003 Sep 11;4:41 [PMID: 12969510]
  20. Biotechniques. 2016 Oct 1;61(4):203-205 [PMID: 27712583]
  21. Science. 2002 Apr 26;296(5568):752-5 [PMID: 11923494]
  22. Nat Commun. 2018 Jan 15;9(1):189 [PMID: 29335486]
  23. Nucleic Acids Res. 2015 Jan;43(Database issue):D130-7 [PMID: 25392425]
  24. Sci Data. 2024 Mar 8;11(1):278 [PMID: 38459062]
  25. Nucleic Acids Res. 2016 May 19;44(9):e89 [PMID: 26893356]
  26. Gigascience. 2020 May 1;9(5): [PMID: 32432329]
  27. Curr Opin Clin Nutr Metab Care. 2018 Nov;21(6):498-504 [PMID: 30199393]
  28. Genome Biol. 2021 Jan 8;22(1):28 [PMID: 33419473]
  29. Nucleic Acids Res. 2012 Jan;40(Database issue):D565-70 [PMID: 22123736]
  30. Hortic Res. 2021 Aug 5;8(1):188 [PMID: 34354050]
  31. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  32. Nat Genet. 2020 Dec;52(12):1423-1432 [PMID: 33139952]
  33. Nucleic Acids Res. 1997 Mar 1;25(5):955-64 [PMID: 9023104]
  34. Cryo Letters. 2022 Mar-Apr;43(2):74-82 [PMID: 36626148]
  35. Commun Biol. 2018 Oct 5;1:162 [PMID: 30320230]
  36. Nat Biotechnol. 2019 Aug;37(8):907-915 [PMID: 31375807]
  37. Ying Yong Sheng Tai Xue Bao. 2020 Aug;31(8):2558-2566 [PMID: 34494777]
  38. Genome Biol. 2019 Dec 16;20(1):277 [PMID: 31842948]
  39. Nat Commun. 2019 Oct 11;10(1):4660 [PMID: 31604920]
  40. Mol Plant. 2020 Aug 3;13(8):1194-1202 [PMID: 32585190]
  41. Plant Biotechnol J. 2020 Sep;18(9):1848-1850 [PMID: 32004401]
  42. Plant J. 2022 Dec;112(5):1194-1211 [PMID: 36219505]
  43. J Comput Biol. 2015 Jun;22(6):498-509 [PMID: 25658651]
  44. Bioinformatics. 2015 Oct 1;31(19):3210-2 [PMID: 26059717]
  45. Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W451-4 [PMID: 15980510]
  46. Ying Yong Sheng Tai Xue Bao. 2017 Feb;28(2):382-390 [PMID: 29749144]
  47. G3 (Bethesda). 2018 Jul 2;8(7):2153-2165 [PMID: 29792315]
  48. Crit Rev Food Sci Nutr. 2017 Nov 2;57(16):3373-3383 [PMID: 26713565]
  49. Trends Genet. 2023 Mar;39(3):175-186 [PMID: 36402623]
  50. BMC Genomics. 2006 Dec 28;7:327 [PMID: 17194304]
  51. Mol Plant. 2021 Jun 7;14(6):851-854 [PMID: 33866024]
  52. Hortic Res. 2023 Feb 01;10(3):uhad015 [PMID: 36968185]
  53. Plant J. 2016 Sep;87(5):507-32 [PMID: 27145194]
  54. Annu Rev Biomed Data Sci. 2021 Jul 20;4:101-122 [PMID: 34465174]
  55. Nat Methods. 2021 Feb;18(2):170-175 [PMID: 33526886]
  56. Plant J. 2018 Nov;96(3):635-650 [PMID: 30079488]
  57. Plant Physiol. 2021 Jun 11;186(2):1025-1041 [PMID: 33620495]
  58. Hortic Res. 2019 Mar 25;6:55 [PMID: 30937174]
  59. PeerJ. 2022 Sep 8;10:e14021 [PMID: 36101878]
  60. Genome Biol. 2019 Dec 16;20(1):275 [PMID: 31843001]
  61. Front Plant Sci. 2018 Sep 21;9:1399 [PMID: 30298084]
  62. Proc Natl Acad Sci U S A. 2019 Mar 19;116(12):5653-5658 [PMID: 30833384]
  63. Plant Biotechnol J. 2022 Jun;20(6):1031-1041 [PMID: 35332665]
  64. F1000Res. 2015 Nov 20;4:1310 [PMID: 26835000]
  65. Nucleic Acids Res. 2000 Jan 1;28(1):27-30 [PMID: 10592173]
  66. Bioinformatics. 2009 May 15;25(10):1335-7 [PMID: 19307242]
  67. Mol Plant. 2022 Aug 1;15(8):1310-1328 [PMID: 35655434]
  68. Bioinformatics. 2018 Sep 15;34(18):3094-3100 [PMID: 29750242]
  69. Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W309-12 [PMID: 15215400]
  70. Genome Biol. 2021 Oct 27;22(1):300 [PMID: 34706738]
  71. Genes Dev. 2019 Nov 1;33(21-22):1591-1612 [PMID: 31601616]
  72. Nat Genet. 2020 Oct;52(10):1111-1121 [PMID: 32989321]

MeSH Term

Alleles
China
Haplotypes
Juglans
Phenotype
Genome, Plant

Word Cloud

Created with Highcharts 10.0.0genomegenewildwalnuthaplotypehap1hap2mininghaplotype-resolvedcontig93identifiedexpressionWildgermplasmresourcescrucialmolecularbreedingspecialtraitperformanceHaplotype-resolvedidealsolutionfullyunderstandingbiologysubgenomeshighlyheterozygousspeciessurveyedtreeGongliuCountyXinjiangChinageneratedreference56299 MbN50 = 3410 Mbone56107 MbN50 = 3391 MbanotherusingPacBiohigh-fidelityHiFireadsHi-CtechnologyApproximately52720 Mb64%52640 Mb82%assigned16pseudochromosomestotal4103939744protein-codingmodelspredictedrespectivelyMoreover123structuralvariationsSVstwogenomesAllele-specificgenesASEGsrespondcoldstressultimatelydatasetscanusedstudysubgenomeevolutionfunctionalelitediscovertranscriptionalbasisspecifictraitsrelatedenvironmentaladaptationprovidesinsightallele-specificJuglansregiaL

Similar Articles

Cited By