Automated detection of nine infantile fundus diseases and conditions in retinal images using a deep learning system.

Yaling Liu, Hai Xie, Xinyu Zhao, Jiannan Tang, Zhen Yu, Zhenquan Wu, Ruyin Tian, Yi Chen, Miaohong Chen, Dimitrios P Ntentakis, Yueshanyi Du, Tingyi Chen, Yarou Hu, Sifan Zhang, Baiying Lei, Guoming Zhang
Author Information
  1. Yaling Liu: Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, 518040 China.
  2. Hai Xie: National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.
  3. Xinyu Zhao: Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, 518040 China.
  4. Jiannan Tang: Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, 518040 China.
  5. Zhen Yu: Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, 518040 China.
  6. Zhenquan Wu: Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, 518040 China.
  7. Ruyin Tian: Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, 518040 China.
  8. Yi Chen: Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, 518040 China.
  9. Miaohong Chen: Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, 518040 China.
  10. Dimitrios P Ntentakis: Retina Service, Ines and Fred Yeatts Retina Research Laboratory, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA USA.
  11. Yueshanyi Du: Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, 518040 China.
  12. Tingyi Chen: Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, 518040 China.
  13. Yarou Hu: Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, 518040 China.
  14. Sifan Zhang: Guizhou Medical University, Guiyang, Guizhou China.
  15. Baiying Lei: National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.
  16. Guoming Zhang: Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, 518040 China. ORCID

Abstract

Purpose: We developed an Infant Retinal Intelligent Diagnosis System (IRIDS), an automated system to aid early diagnosis and monitoring of infantile fundus diseases and health conditions to satisfy urgent needs of ophthalmologists.
Methods: We developed IRIDS by combining convolutional neural networks and transformer structures, using a dataset of 7697 retinal images (1089 infants) from four hospitals. It identifies nine fundus diseases and conditions, namely, retinopathy of prematurity (ROP) (mild ROP, moderate ROP, and severe ROP), retinoblastoma (RB), retinitis pigmentosa (RP), Coats disease, coloboma of the choroid, congenital retinal fold (CRF), and normal. IRIDS also includes depth attention modules, ResNet-18 (Res-18), and Multi-Axis Vision Transformer (MaxViT). Performance was compared to that of ophthalmologists using 450 retinal images. The IRIDS employed a five-fold cross-validation approach to generate the classification results.
Results: Several baseline models achieved the following metrics: accuracy, precision, recall, F1-score (F1), kappa, and area under the receiver operating characteristic curve (AUC) with best values of 94.62% (95% CI, 94.34%-94.90%), 94.07% (95% CI, 93.32%-94.82%), 90.56% (95% CI, 88.64%-92.48%), 92.34% (95% CI, 91.87%-92.81%), 91.15% (95% CI, 90.37%-91.93%), and 99.08% (95% CI, 99.07%-99.09%), respectively. In comparison, IRIDS showed promising results compared to ophthalmologists, demonstrating an average accuracy, precision, recall, F1, kappa, and AUC of 96.45% (95% CI, 96.37%-96.53%), 95.86% (95% CI, 94.56%-97.16%), 94.37% (95% CI, 93.95%-94.79%), 95.03% (95% CI, 94.45%-95.61%), 94.43% (95% CI, 93.96%-94.90%), and 99.51% (95% CI, 99.51%-99.51%), respectively, in multi-label classification on the test dataset, utilizing the Res-18 and MaxViT models. These results suggest that, particularly in terms of AUC, IRIDS achieved performance that warrants further investigation for the detection of retinal abnormalities.
Conclusions: IRIDS identifies nine infantile fundus diseases and conditions accurately. It may aid non-ophthalmologist personnel in underserved areas in infantile fundus disease screening. Thus, preventing severe complications. The IRIDS serves as an example of artificial intelligence integration into ophthalmology to achieve better outcomes in predictive, preventive, and personalized medicine (PPPM / 3PM) in the treatment of infantile fundus diseases.
Supplementary Information: The online version contains supplementary material available at 10.1007/s13167-024-00350-y.

Keywords

References

  1. Transl Vis Sci Technol. 2019 May 30;8(3):29 [PMID: 31171996]
  2. Ophthalmology. 2012 May;119(5):1093 [PMID: 22551617]
  3. Indian J Pediatr. 2017 Dec;84(12):937-944 [PMID: 28620731]
  4. Med Image Anal. 2022 Nov;82:102608 [PMID: 36150271]
  5. Comput Biol Chem. 2005 Feb;29(1):37-46 [PMID: 15680584]
  6. Pan Afr Med J. 2016 Jul 08;24:201 [PMID: 27795796]
  7. JAMA. 2013 Nov 27;310(20):2191-4 [PMID: 24141714]
  8. Am J Ophthalmol. 2012 Jan;153(1):81-7.e1 [PMID: 21872202]
  9. Nat Commun. 2021 May 28;12(1):3242 [PMID: 34050158]
  10. EPMA J. 2023 Mar 15;14(2):219-233 [PMID: 37275550]
  11. EPMA J. 2020 Aug 19;11(Suppl 1):1-133 [PMID: 32837665]
  12. Clin Exp Ophthalmol. 2019 May;47(4):484-489 [PMID: 30370587]
  13. J Proteome Res. 2016 Aug 5;15(8):2455-65 [PMID: 27312948]
  14. EBioMedicine. 2021 May;67:103360 [PMID: 33975254]
  15. JAMA. 2016 Dec 13;316(22):2366-2367 [PMID: 27898977]
  16. Lancet Digit Health. 2020 Jul;2(7):e348-e357 [PMID: 33328094]
  17. EPMA J. 2012 Nov 01;3(1):14 [PMID: 23116135]
  18. EPMA J. 2016 Oct 25;7:23 [PMID: 27800037]
  19. Nat Rev Dis Primers. 2015 Aug 27;1:15021 [PMID: 27189421]
  20. Ophthalmology. 2021 Oct;128(10):e51-e68 [PMID: 34247850]
  21. Neural Netw. 2020 Dec;132:477-490 [PMID: 33039786]
  22. Lancet Digit Health. 2021 Aug;3(8):e486-e495 [PMID: 34325853]
  23. Surv Ophthalmol. 1988 Nov-Dec;33(3):137-77 [PMID: 3068820]
  24. Arch Dis Child Fetal Neonatal Ed. 2015 Mar;100(2):F179-84 [PMID: 25336678]
  25. Ophthalmic Epidemiol. 2022 Oct;29(5):588-594 [PMID: 34620023]
  26. Telemed J E Health. 2016 Mar;22(3):198-208 [PMID: 26308281]
  27. Nature. 2014 Dec 4;516(7529):131-2 [PMID: 25471888]
  28. J Med Syst. 2020 Sep 1;44(10):180 [PMID: 32870389]
  29. Ophthalmology. 2020 Jan;127(1):85-94 [PMID: 31281057]
  30. JAMA Netw Open. 2022 May 2;5(5):e229960 [PMID: 35503220]
  31. Transl Vis Sci Technol. 2021 Jul 1;10(8):1 [PMID: 34196679]
  32. Ophthalmology. 2020 Apr;127(4S):S82-S83 [PMID: 32200830]
  33. IEEE Trans Med Imaging. 2024 Jan;43(1):335-350 [PMID: 37549071]
  34. EPMA J. 2021 Mar 04;12(1):41-55 [PMID: 33786089]
  35. Bioinformatics. 2018 Jan 15;34(2):319-320 [PMID: 28968749]
  36. Am J Ophthalmol. 2020 Sep;217:335-347 [PMID: 32574780]
  37. Nat Commun. 2021 Aug 10;12(1):4828 [PMID: 34376678]
  38. Br J Ophthalmol. 2024 Feb 21;108(3):424-431 [PMID: 36878715]
  39. EPMA J. 2022 Nov 17;13(4):535-545 [PMID: 36415625]
  40. Clin Sci (Lond). 2021 Oct 29;135(20):2357-2376 [PMID: 34661658]
  41. Am J Ophthalmol. 2001 May;131(5):561-71 [PMID: 11336930]
  42. JAMA Oncol. 2020 May 1;6(5):685-695 [PMID: 32105305]
  43. Nat Med. 2019 Jan;25(1):44-56 [PMID: 30617339]
  44. Science. 1999 Oct 15;286(5439):531-7 [PMID: 10521349]
  45. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1975 Jul 4;195(4):241-50 [PMID: 1080374]
  46. Am J Ophthalmol. 2022 Jan;233:124-134 [PMID: 34283982]
  47. Br J Ophthalmol. 2021 Aug;105(8):1099-1103 [PMID: 32830123]

Word Cloud

Created with Highcharts 10.0.095%CIIRIDS94fundusinfantilediseasesretinalconditionsROP99usingimagesninediseaseresultsAUC93developedRetinalsystemaiddatasetidentifiessevereRes-18MaxViTcomparedophthalmologistsclassificationmodelsachievedaccuracyprecisionrecallF1kappa90%9091respectively969551%detectionpersonalizedmedicinelearningPurpose:InfantIntelligentDiagnosisSystemautomatedearlydiagnosismonitoringand healthsatisfyurgentneedsof ophthalmologistsMethods:combiningconvolutionalneuralnetworkstransformerstructures76971089infantsfourhospitalsnamelyretinopathyprematuritymildmoderateretinoblastomaRBretinitispigmentosaRPCoatscolobomachoroidcongenitalfoldCRFnormalalsoincludesdepthattentionmodulesResNet-18Multi-AxisVisionTransformerPerformance450employedfive-foldcross-validationapproachgenerateResults:Severalbaselinefollowingmetrics:F1-scoreareareceiveroperatingcharacteristiccurvebestvalues62%34%-9407%32%-9482%56%8864%-9248%9234%87%-9281%15%37%-9193%08%07%-9909%comparisonshowedpromisingdemonstratingaverage45%37%-9653%86%56%-9716%37%95%-9479%03%45%-9561%43%96%-9451%-99multi-labeltestutilizingsuggestparticularlytermsperformancewarrantsinvestigationabnormalitiesConclusions:accuratelymaynon-ophthalmologistpersonnelunderservedareasscreeningThuspreventingcomplicationsservesexampleartificialintelligenceintegrationophthalmologyachievebetteroutcomespredictivepreventivePPPM / 3PMtreatmentSupplementaryInformation:onlineversioncontainssupplementarymaterialavailable101007/s13167-024-00350-yAutomateddeepDeepinfantFundusPredictive preventivePPPM/3PMimage

Similar Articles

Cited By