Genomic surveillance of malaria parasites in an indigenous community in the Peruvian Amazon.

Luis Cabrera-Sosa, Oscar Nolasco, Johanna H Kattenberg, Carlos Fernandez-Miñope, Hugo O Valdivia, Keare Barazorda, Silvia Arévalo de Los Rios, Hugo Rodriguez-Ferrucci, Joseph M Vinetz, Anna Rosanas-Urgell, Jean-Pierre Van Geertruyden, Dionicia Gamboa, Christopher Delgado-Ratto
Author Information
  1. Luis Cabrera-Sosa: Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia.
  2. Oscar Nolasco: Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia.
  3. Johanna H Kattenberg: Department of Biomedical Sciences, Institute of Tropical Medicine.
  4. Carlos Fernandez-Miñope: Malaria Research group (MaRch), Global Health Institute, Family Medicine and Population Health department, Faculty of Medicine, University of Antwerp.
  5. Hugo O Valdivia: Department of Parasitology, U.S. Naval Medical Research Unit SOUTH (NAMRU SOUTH).
  6. Keare Barazorda: Department of Parasitology, U.S. Naval Medical Research Unit SOUTH (NAMRU SOUTH).
  7. Silvia Arévalo de Los Rios: Laboratorio de Salud Pública de Loreto, Gerencia Regional de Salud de Loreto.
  8. Hugo Rodriguez-Ferrucci: Facultad de Medicina Humana, Universidad Nacional de la Amazonía Peruana.
  9. Joseph M Vinetz: Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine.
  10. Anna Rosanas-Urgell: Department of Biomedical Sciences, Institute of Tropical Medicine.
  11. Jean-Pierre Van Geertruyden: Malaria Research group (MaRch), Global Health Institute, Family Medicine and Population Health department, Faculty of Medicine, University of Antwerp.
  12. Dionicia Gamboa: Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias e Ingeniería, Universidad Peruana Cayetano Heredia.
  13. Christopher Delgado-Ratto: Malaria Research group (MaRch), Global Health Institute, Family Medicine and Population Health department, Faculty of Medicine, University of Antwerp.

Abstract

Hard-to-reach communities represent Peru's main challenge for malaria elimination, but information about transmission in these areas is scarce. Here, we assessed (Pv) and (Pf) transmission dynamics, resistance markers, and Pf deletions in Nueva Jerusalén (NJ), a remote, indigenous community in the Peruvian Amazon with high population mobility. We collected samples from November 2019 to May 2020 by active (ACD) and passive case detection (PCD) in NJ. Parasites were identified with microscopy and PCR. Then, we analyzed a representative set of positive-PCR samples (Pv = 68, Pf = 58) using highly-multiplexed deep sequencing assays (AmpliSeq) and compared NJ parasites with ones from other remote Peruvian areas using population genetics indexes. The ACD intervention did not reduce malaria cases in the short term, and persistent malaria transmission was observed (at least one Pv infection was detected in 96% of the study days). In Nueva Jerusalen, the Pv population had modest genetic diversity (He = 0.27). Pf population had lower diversity (He = 0.08) and presented temporal clustering, one of these clusters linked to an outbreak in February 2020. Moreover, Pv and Pf parasites from NJ exhibited variable levels of differentiation (Pv Fst = -0.52 & Pf Fst = 0.11-0.58) with parasites from other remote areas. No artemisin resistance mutations but chloroquine (57%) and sulfadoxine-pyrimethamine (35-67%) were detected in NJ's Pf parasites. Moreover, gene deletions were common (32-50% of parasites with one or both genes deleted). The persistent Pv transmission and the detection of a Pf outbreak with parasites genetically distinct from the local ones highlight the need for tailored interventions focusing on mobility patterns and imported infections in remote areas to eliminate malaria in the Peruvian Amazon.

References

  1. PLoS One. 2011;6(9):e23486 [PMID: 21949680]
  2. Biomedica. 2023 Sep 30;43(3):352-359 [PMID: 37871569]
  3. Malar J. 2020 Dec 4;19(1):450 [PMID: 33276776]
  4. PLoS Genet. 2018 May 23;14(5):e1007279 [PMID: 29791438]
  5. Lancet Infect Dis. 2018 Aug;18(8):874-883 [PMID: 29909069]
  6. PLoS Negl Trop Dis. 2019 Nov 11;13(11):e0007876 [PMID: 31710604]
  7. Microb Genom. 2016 Nov 30;2(11):e000093 [PMID: 28348833]
  8. Sci Rep. 2017 Aug 14;7(1):8082 [PMID: 28808240]
  9. PLoS Med. 2021 Apr 23;18(4):e1003560 [PMID: 33891580]
  10. Bioinformatics. 2009 Jul 15;25(14):1754-60 [PMID: 19451168]
  11. Pathogens. 2021 Nov 04;10(11): [PMID: 34832588]
  12. Lancet Reg Health Am. 2022 May;9: [PMID: 35663000]
  13. Malar J. 2022 Oct 21;21(1):297 [PMID: 36271383]
  14. J Clin Microbiol. 2005 May;43(5):2435-40 [PMID: 15872277]
  15. Mol Cell. 2000 Oct;6(4):861-71 [PMID: 11090624]
  16. Malar J. 2019 May 7;18(1):163 [PMID: 31064369]
  17. PLoS One. 2015 Jul 07;10(7):e0131576 [PMID: 26151448]
  18. Malar J. 2018 Nov 16;17(1):430 [PMID: 30445959]
  19. Antimicrob Agents Chemother. 2009 May;53(5):2042-51 [PMID: 19258269]
  20. Genome Res. 2010 Sep;20(9):1297-303 [PMID: 20644199]
  21. Sci Rep. 2022 Oct 1;12(1):16474 [PMID: 36182962]
  22. Wellcome Open Res. 2023 Jan 16;8:22 [PMID: 36864926]
  23. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  24. Emerg Infect Dis. 2015 May;21(5):797-803 [PMID: 25897626]
  25. Rev Peru Med Exp Salud Publica. 2018 Jul-Sep;35(3):497-504 [PMID: 30517511]
  26. J Clin Microbiol. 2004 Dec;42(12):5636-43 [PMID: 15583293]
  27. Heliyon. 2020 May 18;6(5):e03964 [PMID: 32885059]
  28. Malar J. 2005 Feb 11;4:11 [PMID: 15707493]
  29. Microbiol Spectr. 2023 Feb 22;:e0096022 [PMID: 36840586]
  30. Bioinformatics. 2019 Feb 1;35(3):526-528 [PMID: 30016406]
  31. PLoS Negl Trop Dis. 2022 May 9;16(5):e0010415 [PMID: 35533146]
  32. Pathog Glob Health. 2015 May;109(3):142-52 [PMID: 25891915]
  33. Malar J. 2020 Nov 30;19(1):439 [PMID: 33256739]
  34. Pathogens. 2021 Mar 02;10(3): [PMID: 33801386]
  35. Int J Infect Dis. 2021 Apr;105:293-297 [PMID: 33596478]
  36. N Engl J Med. 2019 Jan 17;380(3):229-241 [PMID: 30650326]
  37. Bioinformatics. 2011 Nov 1;27(21):3070-1 [PMID: 21926124]
  38. N Engl J Med. 2019 Jan 17;380(3):215-228 [PMID: 30650322]
  39. Malar J. 2020 Nov 11;19(1):404 [PMID: 33176792]
  40. PLoS One. 2010 Jan 25;5(1):e8091 [PMID: 20111602]
  41. Am J Trop Med Hyg. 2016 Jan;94(1):128-31 [PMID: 26483121]
  42. Science. 1999 Nov 12;286(5443):1351-3 [PMID: 10558988]
  43. Glob Health Sci Pract. 2018 Jun 29;6(2):384-389 [PMID: 29875157]
  44. Fly (Austin). 2012 Apr-Jun;6(2):80-92 [PMID: 22728672]
  45. Sci Rep. 2022 Nov 18;12(1):19845 [PMID: 36400806]
  46. Antimicrob Agents Chemother. 2007 Mar;51(3):857-63 [PMID: 17194833]
  47. Int J Environ Res Public Health. 2018 Nov 27;15(12): [PMID: 30486449]
  48. BMC Genet. 2010 Oct 15;11:94 [PMID: 20950446]
  49. PLoS Negl Trop Dis. 2016 Jan 14;10(1):e0004376 [PMID: 26766548]
  50. Ann N Y Acad Sci. 2015 Apr;1342:10-8 [PMID: 25694157]
  51. Bio Protoc. 2023 Mar 05;13(5):e4621 [PMID: 36908639]
  52. Malar J. 2021 Feb 12;20(1):88 [PMID: 33579285]
  53. PLoS One. 2022 Nov 22;17(11):e0273872 [PMID: 36413547]
  54. Evolution. 1984 Nov;38(6):1358-1370 [PMID: 28563791]
  55. Am J Trop Med Hyg. 2018 Jul;99(1):73-83 [PMID: 29741155]
  56. Antimicrob Agents Chemother. 2021 Jul 16;65(8):e0009521 [PMID: 34031050]
  57. Int J Parasitol Drugs Drug Resist. 2021 Aug;16:23-37 [PMID: 33957488]
  58. Trans R Soc Trop Med Hyg. 1999 Jul-Aug;93(4):369-74 [PMID: 10674079]
  59. PLoS Negl Trop Dis. 2024 Jul 11;18(7):e0011879 [PMID: 38991038]

Grants

  1. U19 AI089681/NIAID NIH HHS

Word Cloud

Created with Highcharts 10.0.0PfPvparasites=malariatransmissionareasNJremotePeruvianpopulationAmazonone0resistancedeletionsNuevaindigenouscommunitymobilitysamples2020ACDdetection58usingonespersistentdetecteddiversityoutbreakMoreoverFstHard-to-reachcommunitiesrepresentPeru'smainchallengeeliminationinformationscarceassesseddynamicsmarkersJerusalénhighcollectedNovember2019MayactivepassivecasePCDParasitesidentifiedmicroscopyPCRanalyzedrepresentativesetpositive-PCR68highly-multiplexeddeepsequencingassaysAmpliSeqcomparedgeneticsindexesinterventionreducecasesshorttermobservedleastinfection96%studydaysJerusalenmodestgenetic27lower08presentedtemporalclusteringclusterslinkedFebruaryexhibitedvariablelevelsdifferentiation-052&11-0artemisinmutationschloroquine57%sulfadoxine-pyrimethamine35-67%NJ'sgenecommon32-50%genesdeletedgeneticallydistinctlocalhighlightneedtailoredinterventionsfocusingpatternsimportedinfectionseliminateGenomicsurveillance

Similar Articles

Cited By