Serum cytokine profile of neonatal broiler chickens infected with .

Allison Milby-Blackledge, Yuhua Farnell, Dan Zhao, Luc Berghman, Craig Laino, Melissa Muller, J Allen Byrd, Morgan Farnell
Author Information
  1. Allison Milby-Blackledge: Texas A&M AgriLife Research, Department of Poultry Science, College Station, TX, United States.
  2. Yuhua Farnell: Texas A&M AgriLife Research, Department of Poultry Science, College Station, TX, United States.
  3. Dan Zhao: Texas A&M AgriLife Research, Department of Poultry Science, College Station, TX, United States.
  4. Luc Berghman: Texas A&M AgriLife Research, Department of Poultry Science, College Station, TX, United States.
  5. Craig Laino: Millipore Sigma, Saint Louis, MO, United States.
  6. Melissa Muller: Millipore Sigma, Saint Louis, MO, United States.
  7. J Allen Byrd: United States Department of Agriculture, Southern Plains Agricultural Research Service, College Station, TX, United States.
  8. Morgan Farnell: Texas A&M AgriLife Research, Department of Poultry Science, College Station, TX, United States.

Abstract

The avian immune system responds to infection by expressing cytokines and chemokines. We hypothesized that the immune status of Typhimurium (ST) challenged neonatal broilers would differ from the uninfected treatment. The objective of this experiment was to evaluate 12 cytokines. Day of hatch male chicks were randomly allocated into a control or ST challenged group. At day three of age, sterile diluent or 5.0 × 10 CFU of ST was given orally to each chick. Blood was obtained 24 h post challenge and serum separated for later analysis (n = 30 chicks/treatment). Significant ( ≤ 0.05) increases in -interleukin-6 (IL-6), IL-16, and IL-21; - IL-10; -regulated on activation, normal T cell expressed and secreted (RANTES), macrophage inflammatory protein-1β (MIP-1β), and MIP-3α; -macrophage colony-stimulating factor (M-CSF); and -vascular endothelial growth factor (VEGF) were observed in the serum of the challenged chicks when compared to the control. No significant differences were observed in IL-2, interferon gamma (IFNγ), and IFNα. These data indicate the detection of mucosal immune responses in broiler chickens following ST infection. The heightened levels of pro-inflammatory cytokines, chemokines, and colony stimulating factors align with known inflammatory mechanisms, like the influx of immune cells. However, the elevation of IL-10 was unexpected, due to its immunoregulatory properties. Notably, the rise in VEGF levels is compelling, as it suggests the possibility of tissue repair and angiogenesis in ST infected birds.

Keywords

References

  1. Epidemiol Infect. 2005 Dec;133(6):959-78 [PMID: 16274493]
  2. Vaccine. 2007 Dec 12;25(51):8611-21 [PMID: 18006123]
  3. Indian J Med Res. 2019 Jul;150(1):92-95 [PMID: 31571635]
  4. Nature. 2021 May;593(7860):506-509 [PMID: 34035530]
  5. Gut Microbes. 2012 Mar-Apr;3(2):62-70 [PMID: 22198618]
  6. Infect Immun. 2003 Jan;71(1):524-6 [PMID: 12496204]
  7. Br J Pharmacol. 2003 Jun;139(3):634-40 [PMID: 12788823]
  8. Front Immunol. 2017 Apr 04;8:372 [PMID: 28421074]
  9. Future Microbiol. 2015;10(1):101-10 [PMID: 25598340]
  10. J AIDS Clin Res. 2016 Jul;7(7): [PMID: 27617163]
  11. Sci Rep. 2017 Aug 22;7(1):9089 [PMID: 28831181]
  12. Cancer Epidemiol Biomarkers Prev. 2010 Apr;19(4):978-81 [PMID: 20332253]
  13. Poult Sci. 2013 Dec;92(12):3134-43 [PMID: 24235222]
  14. Microbes Infect. 2001 Nov-Dec;3(14-15):1191-200 [PMID: 11755407]
  15. Innate Immun. 2016 Nov;22(8):647-657 [PMID: 27670945]
  16. Infect Immun. 2004 Apr;72(4):2152-9 [PMID: 15039338]
  17. J Immunol. 2004 Aug 15;173(4):2675-82 [PMID: 15294985]
  18. Front Immunol. 2017 Aug 02;8:889 [PMID: 28824622]
  19. Immunol Lett. 2017 Oct;190:42-50 [PMID: 28720334]
  20. Clin Exp Immunol. 2003 Dec;134(3):447-53 [PMID: 14632750]
  21. Avian Pathol. 2000 Oct;29(5):395-404 [PMID: 19184830]
  22. Microorganisms. 2021 Feb 21;9(2): [PMID: 33670039]
  23. Front Immunol. 2014 Oct 10;5:482 [PMID: 25346731]
  24. Poult Sci. 2008 Jul;87(7):1335-46 [PMID: 18577613]
  25. J Anim Sci. 2020 Jan 1;98(1): [PMID: 31894241]
  26. Microorganisms. 2019 Feb 28;7(3): [PMID: 30823445]
  27. Cell. 2012 Oct 26;151(3):590-602 [PMID: 23101627]
  28. Mol Biol Evol. 2023 Aug 3;40(8): [PMID: 37498582]
  29. Vet Microbiol. 2012 Sep 14;159(1-2):212-20 [PMID: 22542524]
  30. Physiol Behav. 2019 Dec 1;212:112680 [PMID: 31518579]
  31. Anal Chim Acta. 2019 Feb 21;1049:213-218 [PMID: 30612653]
  32. Int J Mol Sci. 2020 Mar 31;21(7): [PMID: 32244489]
  33. Vet Immunol Immunopathol. 2009 Dec 15;132(2-4):129-34 [PMID: 19505732]
  34. Poult Sci. 2011 Aug;90(8):1659-63 [PMID: 21753200]
  35. Microbiology (Reading). 2000 Dec;146 Pt 12:3217-3226 [PMID: 11101679]
  36. Cells. 2021 Dec 10;10(12): [PMID: 34943999]
  37. FEBS Lett. 2012 Mar 9;586(5):536-44 [PMID: 21827758]
  38. Nihon Ika Daigaku Zasshi. 1994 Aug;61(4):315-20 [PMID: 8083336]
  39. Chest. 2000 Apr;117(4):1162-72 [PMID: 10767254]
  40. Proc Natl Acad Sci U S A. 2013 Mar 19;110(12):4563-8 [PMID: 23487783]
  41. Curr Opin Immunol. 2007 Apr;19(2):209-16 [PMID: 17276050]
  42. Poult Sci. 2013 Dec;92(12):3214-27 [PMID: 24235232]
  43. Front Microbiol. 2011 Jan 31;2:8 [PMID: 21687405]
  44. J Leukoc Biol. 2016 Sep;100(3):481-9 [PMID: 27354413]
  45. Dev Comp Immunol. 2012 Feb;36(2):475-82 [PMID: 21911004]
  46. Anim Biotechnol. 2005;16(2):165-81 [PMID: 16335810]
  47. Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):6181-6 [PMID: 11972057]
  48. FEBS J. 2018 Aug;285(16):2944-2971 [PMID: 29637711]
  49. Immunopharmacol Immunotoxicol. 1998 Feb;20(1):79-102 [PMID: 9543701]
  50. Vet Immunol Immunopathol. 2011 Jul 15;142(1-2):14-24 [PMID: 21501879]
  51. J Infect Dis. 2014 Jun 15;209(12):2000-11 [PMID: 24415783]
  52. Sci Rep. 2016 Aug 02;6:30004 [PMID: 27481356]
  53. Eur J Immunol. 1996 Feb;26(2):315-9 [PMID: 8617297]
  54. Reprod Fertil Dev. 1996;8(1):103-9 [PMID: 8713728]
  55. Dev Comp Immunol. 2004 Feb;28(2):153-62 [PMID: 12969800]
  56. Mucosal Immunol. 2011 Jul;4(4):371-82 [PMID: 21307847]
  57. Infect Immun. 2011 Jul;79(7):2755-63 [PMID: 21555397]
  58. Poult Sci. 2023 Apr;102(4):102531 [PMID: 36805406]
  59. Dev Comp Immunol. 2006;30(4):419-29 [PMID: 16153708]
  60. Poult Sci. 2020 Dec;99(12):6593-6605 [PMID: 33248575]
  61. Infect Immun. 2005 Aug;73(8):5173-82 [PMID: 16041035]

Word Cloud

Created with Highcharts 10.0.0immuneSTcytokineschallengedseruminfectionchemokinesTyphimuriumneonatalchickscontrol0IL-10inflammatoryfactorVEGFobservedbroilerchickenslevelsinfectedcytokineaviansystemrespondsexpressinghypothesizedstatusbroilersdifferuninfectedtreatmentobjectiveexperimentevaluate12Dayhatchmalerandomlyallocatedgroupdaythreeagesterilediluent5×10 CFUgivenorallychickBloodobtained24 hpostchallengeseparatedlateranalysisn=30chicks/treatmentSignificant05increases-interleukin-6IL-6IL-16IL-21--regulatedactivationnormalTcellexpressedsecretedRANTESmacrophageprotein-1βMIP-1βMIP-3α-macrophagecolony-stimulatingM-CSF-vascularendothelialgrowthcomparedsignificantdifferencesIL-2interferongammaIFNγIFNαdataindicatedetectionmucosalresponsesfollowingheightenedpro-inflammatorycolonystimulatingfactorsalignknownmechanismslikeinfluxcellsHoweverelevationunexpecteddueimmunoregulatorypropertiesNotablyrisecompellingsuggestspossibilitytissuerepairangiogenesisbirdsSerumprofileSalmonellaresponseimmunoassaypoultry

Similar Articles

Cited By