Characterization of leucine aminopeptidase (LAP) activity in sweet pepper fruits during ripening and its inhibition by nitration and reducing events.

María A Muñoz-Vargas, Jorge Taboada, Salvador González-Gordo, José M Palma, Francisco J Corpas
Author Information
  1. María A Muñoz-Vargas: Department of Stress, Development and Signaling in Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín Spanish National Research Council, CSIC, C/Profesor Albareda, 1, 18008, Granada, Spain.
  2. Jorge Taboada: Department of Stress, Development and Signaling in Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín Spanish National Research Council, CSIC, C/Profesor Albareda, 1, 18008, Granada, Spain.
  3. Salvador González-Gordo: Department of Stress, Development and Signaling in Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín Spanish National Research Council, CSIC, C/Profesor Albareda, 1, 18008, Granada, Spain.
  4. José M Palma: Department of Stress, Development and Signaling in Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín Spanish National Research Council, CSIC, C/Profesor Albareda, 1, 18008, Granada, Spain.
  5. Francisco J Corpas: Department of Stress, Development and Signaling in Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín Spanish National Research Council, CSIC, C/Profesor Albareda, 1, 18008, Granada, Spain. javier.corpas@eez.csic.es. ORCID

Abstract

KEY MESSAGE: Pepper fruits contain two leucine aminopeptidase (LAP) genes which are differentially modulated during ripening and by nitric oxide. The LAP activity increases during ripening but is negatively modulated by nitration. Leucine aminopeptidase (LAP) is an essential metalloenzyme that cleaves N-terminal leucine residues from proteins but also metabolizes dipeptides and tripeptides. LAPs play a fundamental role in cell protein turnover and participate in physiological processes such as defense mechanisms against biotic and abiotic stresses, but little is known about their involvement in fruit physiology. This study aims to identify and characterize genes encoding LAP and evaluate their role during the ripening of pepper (Capsicum annuum L.) fruits and under a nitric oxide (NO)-enriched environment. Using a data-mining approach of the pepper plant genome and fruit transcriptome (RNA-seq), two LAP genes, designated CaLAP1 and CaLAP2, were identified. The time course expression analysis of these genes during different fruit ripening stages showed that whereas CaLAP1 decreased, CaLAP2 was upregulated. However, under an exogenous NO treatment of fruits, both genes were downregulated. On the contrary, it was shown that during fruit ripening LAP activity increased by 81%. An in vitro assay of the LAP activity in the presence of different modulating compounds including peroxynitrite (ONOO), NO donors (S-nitrosoglutathione and nitrosocyteine), reducing agents such as reduced glutathione (GSH), L-cysteine (L-Cys), and cyanide triggered a differential response. Thus, peroxynitrite and reducing compounds provoked around 50% inhibition of the LAP activity in green immature fruits, whereas cyanide upregulated it 1.5 folds. To our knowledge, this is the first characterization of LAP in pepper fruits as well as of its regulation by diverse modulating compounds. Based on the capacity of LAP to metabolize dipeptides and tripeptides, it could be hypothesized that the LAP might be involved in the GSH recycling during the ripening process.

Keywords

References

  1. Nitric Oxide. 2019 Dec 1;93:53-70 [PMID: 31541734]
  2. Eur J Biochem. 2000 Feb;267(4):1178-87 [PMID: 10672029]
  3. Environ Pollut. 2012 Jul;166:136-43 [PMID: 22504427]
  4. J Biol Chem. 2009 Dec 18;284(51):35412-24 [PMID: 19822524]
  5. Arch Biochem Biophys. 1971 Aug;145(2):633-42 [PMID: 5001478]
  6. Int J Mol Sci. 2021 May 04;22(9): [PMID: 34064462]
  7. Plant J. 2021 Mar;105(5):1431-1442 [PMID: 33258209]
  8. Planta. 1994;194(2):230-40 [PMID: 7765119]
  9. J Exp Bot. 2022 Jan 5;73(1):78-93 [PMID: 34460901]
  10. J Biol Chem. 2008 Jul 11;283(28):19351-8 [PMID: 18482986]
  11. Hortic Res. 2018 Jan 12;5:4 [PMID: 29423234]
  12. Arch Biochem Biophys. 2002 Jan 15;397(2):392-8 [PMID: 11795899]
  13. Planta. 2008 Jan;227(2):341-51 [PMID: 17896114]
  14. J Exp Bot. 2019 Apr 12;70(7):2049-2058 [PMID: 30576524]
  15. Acta Crystallogr D Struct Biol. 2016 May;72(Pt 5):694-702 [PMID: 27139632]
  16. Foods. 2023 Oct 29;12(21): [PMID: 37959067]
  17. Acta Crystallogr D Biol Crystallogr. 2014 Jun;70(Pt 6):1649-58 [PMID: 24914976]
  18. Plant Physiol Biochem. 2017 Jul;116:18-26 [PMID: 28482331]
  19. Vavilovskii Zhurnal Genet Selektsii. 2020 Nov;24(7):687-696 [PMID: 33738386]
  20. J Exp Bot. 2018 Jun 19;69(14):3449-3463 [PMID: 29304200]
  21. Nitric Oxide. 2018 Dec 1;81:36-45 [PMID: 30326260]
  22. Sci China Life Sci. 2013 Oct;56(10):968-74 [PMID: 24022126]
  23. Eur J Biochem. 1992 Apr 1;205(1):425-31 [PMID: 1555602]
  24. Hoppe Seylers Z Physiol Chem. 1962 Nov 15;329:278-88 [PMID: 13994792]
  25. Z Naturforsch C J Biosci. 2006 Mar-Apr;61(3-4):222-6 [PMID: 16729580]
  26. Mol Hortic. 2021 Dec 9;1(1):16 [PMID: 37789491]
  27. FEBS Lett. 2000 Feb 18;468(1):89-92 [PMID: 10683447]
  28. Biol Chem. 2006 Dec;387(12):1535-44 [PMID: 17132098]
  29. Plant Cell. 2009 Apr;21(4):1239-51 [PMID: 19376935]
  30. J Sci Food Agric. 2020 Mar 30;100(5):2208-2223 [PMID: 31909478]
  31. Plants (Basel). 2019 Jul 04;8(7): [PMID: 31277433]
  32. RSC Adv. 2018 Jul 19;8(45):25767-25784 [PMID: 35539808]
  33. Mol Biol Evol. 2002 Dec;19(12):2346-52 [PMID: 12446829]
  34. J Sci Food Agric. 2021 Dec;101(15):6533-6541 [PMID: 34010498]
  35. Mol Plant. 2020 Aug 3;13(8):1194-1202 [PMID: 32585190]
  36. Antioxidants (Basel). 2022 Apr 12;11(4): [PMID: 35453450]
  37. Planta. 2000 Mar;210(4):563-73 [PMID: 10787049]
  38. Nat Plants. 2021 May;7(5):655-666 [PMID: 34007040]
  39. Antioxidants (Basel). 2022 Nov 14;11(11): [PMID: 36421431]
  40. J Exp Bot. 2019 Aug 29;70(17):4557-4570 [PMID: 31046097]
  41. Plants (Basel). 2020 Sep 17;9(9): [PMID: 32957596]
  42. Plant J. 2020 Dec;104(5):1182-1194 [PMID: 32920905]
  43. J Exp Bot. 2023 Jun 6;74(11):3313-3327 [PMID: 36651789]
  44. Int J Mol Sci. 2019 Oct 28;20(21): [PMID: 31661878]
  45. Plant Physiol. 2003 May;132(1):243-55 [PMID: 12746529]
  46. Plant Cell Physiol. 2023 Jan 30;63(12):1814-1825 [PMID: 36208156]
  47. Plant Physiol. 1999 Aug;120(4):979-92 [PMID: 10444081]
  48. Plant Physiol. 2019 Jan;179(1):107-123 [PMID: 30377236]
  49. J Plant Physiol. 2023 Dec;291:154121 [PMID: 37924627]
  50. Genomics. 2019 Dec;111(6):1913-1922 [PMID: 30615924]
  51. J Plant Physiol. 2018 Jul;226:64-76 [PMID: 29704645]
  52. Sci Rep. 2024 Jan 26;14(1):2226 [PMID: 38278802]
  53. Mol Biosyst. 2011 Apr;7(4):1197-204 [PMID: 21258675]
  54. Nature. 2021 Aug;596(7873):583-589 [PMID: 34265844]
  55. Plant Physiol. 2004 Sep;136(1):2722-33 [PMID: 15347796]
  56. Antioxidants (Basel). 2023 Apr 27;12(5): [PMID: 37237879]
  57. Plant Cell. 2015 Apr;27(4):1162-72 [PMID: 25901087]
  58. Genes (Basel). 2017 Aug 11;8(8): [PMID: 28800125]
  59. Biochem J. 2004 Feb 15;378(Pt 1):35-44 [PMID: 14583094]
  60. Sci Rep. 2019 Jun 19;9(1):8734 [PMID: 31217463]
  61. Plants (Basel). 2023 Sep 27;12(19): [PMID: 37836149]
  62. BMC Plant Biol. 2021 Jan 6;21(1):12 [PMID: 33407137]
  63. PLoS One. 2017 Oct 12;12(10):e0185492 [PMID: 29023459]
  64. Bioinformatics. 2007 Jan 1;23(1):127-8 [PMID: 17050570]
  65. Antioxidants (Basel). 2022 Mar 26;11(4): [PMID: 35453324]
  66. Eur J Cell Biol. 1993 Jun;61(1):81-5 [PMID: 8223710]
  67. Redox Biol. 2017 Aug;12:171-181 [PMID: 28242561]
  68. Plant Cell Physiol. 2022 Jul 14;63(7):889-900 [PMID: 35323963]
  69. Plants (Basel). 2023 Jan 04;12(2): [PMID: 36678946]
  70. Antioxid Redox Signal. 2023 Jul;39(1-3):2-18 [PMID: 36950799]
  71. Plant Physiol. 1989 Dec;91(4):1414-8 [PMID: 16667194]
  72. Biochem J. 2015 May 15;468(1):73-85 [PMID: 25716890]
  73. Mol Plant Microbe Interact. 2001 Feb;14(2):214-24 [PMID: 11204785]
  74. J Agric Food Chem. 2023 Jun 21;71(24):9213-9242 [PMID: 37289974]
  75. Planta. 2000 Aug;211(3):315-24 [PMID: 10987549]
  76. Plant Physiol Biochem. 2013 Apr;65:75-80 [PMID: 23434924]
  77. Ann Bot. 2015 Sep;116(4):637-47 [PMID: 25814060]
  78. Ann Bot. 2011 May;107(7):1171-81 [PMID: 21258033]
  79. Biochem J. 1974 Jul;141(1):113-8 [PMID: 4455194]
  80. BMC Genom Data. 2022 Mar 25;23(1):21 [PMID: 35337259]
  81. Mol Biol Evol. 2021 Jun 25;38(7):3022-3027 [PMID: 33892491]
  82. Plant J. 2018 Nov;96(4):705-715 [PMID: 30242930]
  83. J Proteomics. 2022 Jun 15;261:104578 [PMID: 35398364]
  84. Biochim Biophys Acta. 2013 Feb;1833(2):360-70 [PMID: 22495024]
  85. Trends Plant Sci. 2022 Feb;27(2):116-119 [PMID: 34893427]
  86. Evolution. 1985 Jul;39(4):783-791 [PMID: 28561359]
  87. J Biol Chem. 1996 Oct 18;271(42):25880-7 [PMID: 8824220]
  88. Front Plant Sci. 2016 Nov 03;7:1646 [PMID: 27857720]
  89. Nature. 2011 Jul 10;475(7355):189-95 [PMID: 21743474]
  90. Int J Mol Sci. 2022 Oct 04;23(19): [PMID: 36233073]
  91. BMC Bioinformatics. 2018 Nov 20;19(Suppl 14):416 [PMID: 30453874]
  92. BMC Plant Biol. 2021 Feb 1;21(1):69 [PMID: 33526024]
  93. Nucleic Acids Res. 2002 Jan 1;30(1):325-7 [PMID: 11752327]
  94. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W585-7 [PMID: 17517783]
  95. Plants (Basel). 2019 Mar 16;8(3): [PMID: 30884848]
  96. J Mol Evol. 1999 Sep;49(3):376-84 [PMID: 10473779]
  97. Front Plant Sci. 2022 Sep 15;13:922963 [PMID: 36186014]
  98. PLoS One. 2021 Aug 24;16(8):e0256319 [PMID: 34428253]
  99. J Biol Chem. 2012 May 25;287(22):18408-17 [PMID: 22493451]
  100. Biochimie. 2019 Nov;166:38-51 [PMID: 30654132]
  101. New Phytol. 2011 Sep;191(4):958-969 [PMID: 21569035]
  102. Comput Appl Biosci. 1992 Jun;8(3):275-82 [PMID: 1633570]
  103. Front Genet. 2023 Nov 10;14:1290492 [PMID: 38028623]

Grants

  1. PID2019-103924GB-I00/Ministerio de Ciencia, Innovación y Universidades

MeSH Term

Nitric Oxide
Fruit
Capsicum
Leucine
Leucyl Aminopeptidase
Peroxynitrous Acid
Cyanides
Dipeptides

Chemicals

Nitric Oxide
Leucine
Leucyl Aminopeptidase
Peroxynitrous Acid
Cyanides
Dipeptides

Word Cloud

Created with Highcharts 10.0.0LAPripeningfruitsgenesactivityfruitpepperleucineaminopeptidaseoxideNOcompoundsreducingPeppertwomodulatednitricnitrationdipeptidestripeptidesroleCaLAP1CaLAP2differentwhereasupregulatedmodulatingperoxynitriteGSHcyanideinhibitionKEYMESSAGE:containdifferentiallyincreasesnegativelyLeucineessentialmetalloenzymecleavesN-terminalresiduesproteinsalsometabolizesLAPsplayfundamentalcellproteinturnoverparticipatephysiologicalprocessesdefensemechanismsbioticabioticstresseslittleknowninvolvementphysiologystudyaimsidentifycharacterizeencodingevaluateCapsicumannuumL-enrichedenvironmentUsingdata-miningapproachplantgenometranscriptomeRNA-seqdesignatedidentifiedtimecourseexpressionanalysisstagesshoweddecreasedHoweverexogenoustreatmentdownregulatedcontraryshownincreased81%vitroassaypresenceincludingONOOdonorsS-nitrosoglutathionenitrosocyteineagentsreducedglutathioneL-cysteineL-CystriggereddifferentialresponseThusprovokedaround50%greenimmature15foldsknowledgefirstcharacterizationwellregulationdiverseBasedcapacitymetabolizehypothesizedmightinvolvedrecyclingprocessCharacterizationsweeteventsAminopeptidaseCyanideFruitGlutathioneIntron/exonNitrationNitric

Similar Articles

Cited By