A review and meta-analysis of non-typhoidal in Vietnam: Challenges to the control and antimicrobial resistance traits of a neglected zoonotic pathogen.

Nguyen Thi Nhung, Doan Hoang Phu, Juan J Carrique-Mas, Pawin Padungtod
Author Information
  1. Nguyen Thi Nhung: Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam.
  2. Doan Hoang Phu: Faculty of Animal Science and Veterinary Medicine, Nong Lam University, Ho Chi Minh City, Viet Nam.
  3. Juan J Carrique-Mas: Food and Agriculture Organization of the United Nations (FAO), Hanoi, Viet Nam.
  4. Pawin Padungtod: Food and Agriculture Organization of the United Nations (FAO), Hanoi, Viet Nam.

Abstract

Non-typhoidal (NTS) is a food-borne zoonotic pathogen with important implications for human health. Despite its importance, the burden of NTS infections in Vietnam is unknown. We conducted a systematic review and a meta-analysis to describe the prevalence and phenotypic antimicrobial resistance (AMR) for NTS over time in Vietnam. Following PRISMA guidelines, we identified 72 studies from PubMed and Google Scholar containing data relevant to ', 'Salmonellosis', and 'Vietnam', or 'Viet Nam'. Of those, forty-two papers reporting prevalence of NTS, and twenty-six including data on phenotypic resistance were selected for meta-analysis. The prevalence of NTS ranged from 2% to 5% in humans and from 30% to 41% in samples from animals and the farm/slaughterhouse environment. Between 2000 and 2020 we observed a 27.3% ( = 0.044) increase in absolute terms in prevalence among individuals with enteric diseases and a 12.0% ( = 0.047) increase in aquaculture/seafood samples. The most commonly serovars identified across studies included . Weltevreden (12.0%), followed by Typhimurium (10.1%), . Derby (6.4%), . London (5.8%), . Anatum (4.4%), . Rissen (3.9%), Enteritidis (3.7%), . Albany (3.3%) and . 4,[5],12:i:- (3.0%). Over the same period, there was an increasing trend in the pooled AMR prevalence for quinolones (15.6% relative increase), 3rd-, 4th-, and 5th-generation cephalosporins (23.7%), penicillins (16.1%), tetracyclines (12.9%), sulfonamides (8.8%), amphenicol (17.8%), and multidrug resistance (11.4%) (all  ≤ 0.014). A broad range of AMR genes (ARGs) were detected in both human and animal populations. The observed prevalence and AMR trends in Vietnam underscore the need of adopting a One Health strategy encompassing surveillance systems, research initiatives, and awareness campaigns to effectively address the challenges posed by NTS.

Keywords

References

  1. PLoS Negl Trop Dis. 2020 Feb 21;14(2):e0007875 [PMID: 32084128]
  2. Emerg Infect Dis. 2002 Feb;8(2):175-80 [PMID: 11897070]
  3. Antimicrob Resist Infect Control. 2017 Oct 16;6:105 [PMID: 29046783]
  4. J Vet Med Sci. 2012 Sep;74(9):1163-9 [PMID: 22673721]
  5. J Infect. 2020 Aug;81(2):221-230 [PMID: 32445725]
  6. J Antimicrob Chemother. 2003 Oct;52(4):715-8 [PMID: 12972453]
  7. Am J Trop Med Hyg. 2018 Sep;99(3_Suppl):72-78 [PMID: 30047368]
  8. Front Vet Sci. 2021 Jul 08;8:618497 [PMID: 34307512]
  9. J Vet Med Sci. 2008 Nov;70(11):1159-64 [PMID: 19057132]
  10. Environ Health Insights. 2020 Oct 05;14:1178630220943206 [PMID: 33088179]
  11. Appl Environ Microbiol. 2007 Nov;73(21):6885-90 [PMID: 17766455]
  12. Foodborne Pathog Dis. 2020 Feb;17(2):87-97 [PMID: 31532231]
  13. Int J Infect Dis. 2014 Sep;26:128-31 [PMID: 25058126]
  14. Antimicrob Resist Infect Control. 2020 Jan 14;9(1):16 [PMID: 31956405]
  15. PLoS One. 2015 Jul 29;10(7):e0134252 [PMID: 26222547]
  16. Front Vet Sci. 2021 Aug 27;8:705044 [PMID: 34513973]
  17. Jpn J Infect Dis. 2015;68(1):30-2 [PMID: 25420651]
  18. J Food Prot. 2012 Oct;75(10):1851-4 [PMID: 23043836]
  19. Sci Total Environ. 2016 Oct 1;566-567:1014-1022 [PMID: 27325013]
  20. Foodborne Pathog Dis. 2021 May;18(5):354-363 [PMID: 33902318]
  21. J Food Prot. 2016 May 1;80(5):716-724 [PMID: 28350183]
  22. EFSA J. 2023 Mar 06;21(3):e07867 [PMID: 36891283]
  23. BMJ. 2021 Mar 29;372:n71 [PMID: 33782057]
  24. Vet Rec. 2008 Nov 29;163(22):649-54 [PMID: 19043089]
  25. J Food Prot. 2021 Nov 1;84(11):1915-1921 [PMID: 34189563]
  26. Ann N Y Acad Sci. 2006 Oct;1081:266-8 [PMID: 17135523]
  27. Front Microbiol. 2020 Aug 25;11:1985 [PMID: 32983012]
  28. J Food Prot. 2018 Sep;81(9):1459-1466 [PMID: 30084656]
  29. J Food Prot. 2010 Feb;73(2):376-9 [PMID: 20132687]
  30. Epidemiol Infect. 2020 May 26;148:e144 [PMID: 32450932]
  31. J Vet Med Sci. 2004 Aug;66(8):1011-4 [PMID: 15353859]
  32. J Genomics. 2020 Jul 3;8:76-79 [PMID: 32817764]
  33. J Food Prot. 2016 Aug;79(8):1348-54 [PMID: 27497122]
  34. One Health. 2022 Nov 19;15:100465 [PMID: 36561710]
  35. Food Control. 2020 Jan;107:106756 [PMID: 31902975]
  36. Int J Food Microbiol. 2021 Mar 2;341:109049 [PMID: 33493824]
  37. Food Microbiol. 2008 Feb;25(1):29-35 [PMID: 17993374]
  38. J Clin Microbiol. 2020 Nov 18;58(12): [PMID: 32907994]
  39. Microb Genom. 2022 May;8(5): [PMID: 35511231]
  40. Health Sci Rep. 2020 Jul 27;3(3):e178 [PMID: 32728636]
  41. Int J Food Microbiol. 2021 May 16;346:109163 [PMID: 33798966]
  42. Vet Microbiol. 2006 Mar 10;113(1-2):153-8 [PMID: 16337754]
  43. J Food Prot. 2005 May;68(5):1077-80 [PMID: 15895745]
  44. Foods. 2023 Apr 23;12(9): [PMID: 37174295]
  45. FEMS Immunol Med Microbiol. 2012 Apr;64(3):429-32 [PMID: 22151215]
  46. Epidemiol Infect. 2013 Aug;141(8):1604-13 [PMID: 23010148]
  47. Front Vet Sci. 2022 Mar 29;9:816279 [PMID: 35425826]
  48. Vet Microbiol. 2020 Jul;246:108725 [PMID: 32605745]
  49. Int J Infect Dis. 2006 Jul;10(4):298-308 [PMID: 16458564]
  50. Psychol Methods. 2006 Jun;11(2):193-206 [PMID: 16784338]
  51. Epidemiol Infect. 2015 Oct;143(14):3074-86 [PMID: 25778282]
  52. Int J Hyg Environ Health. 2014 Sep;217(7):785-95 [PMID: 24933419]
  53. Zoonoses Public Health. 2019 Nov;66(7):701-728 [PMID: 31313525]
  54. Int J Public Health. 2017 Feb;62(Suppl 1):93-102 [PMID: 27837223]
  55. PLoS One. 2010 Feb 26;5(2):e9440 [PMID: 20195474]
  56. Int J Food Microbiol. 2018 Feb 2;266:301-309 [PMID: 29275223]
  57. Int J Evid Based Healthc. 2015 Sep;13(3):147-53 [PMID: 26317388]
  58. Am J Trop Med Hyg. 2015 May;92(5):1045-52 [PMID: 25802437]
  59. Trans R Soc Trop Med Hyg. 2012 Jan;106(1):26-34 [PMID: 22137537]
  60. Int Microbiol. 2017 Jun;20(2):85-93 [PMID: 28617526]
  61. J Vet Med Sci. 2009 Apr;71(4):485-7 [PMID: 19420853]
  62. PLoS Negl Trop Dis. 2016 Feb 11;10(2):e0004446 [PMID: 26867150]
  63. Infect Genet Evol. 2020 Nov;85:104534 [PMID: 32920195]
  64. Zoonoses Public Health. 2017 Mar;64(2):94-99 [PMID: 27152998]
  65. Zoonoses Public Health. 2016 Nov;63(7):569-576 [PMID: 26952244]
  66. Ann N Y Acad Sci. 2006 Oct;1081:257-61 [PMID: 17135521]
  67. Ann N Y Acad Sci. 2006 Oct;1081:262-5 [PMID: 17135522]
  68. Ann N Y Acad Sci. 2006 Oct;1081:269-72 [PMID: 17135524]
  69. Int J Food Microbiol. 2019 Feb 2;290:105-115 [PMID: 30317109]
  70. Int J Infect Dis. 2015 Jun;35:3-10 [PMID: 25813553]
  71. mBio. 2018 Sep 4;9(5): [PMID: 30181247]
  72. Appl Environ Microbiol. 2007 Dec;73(24):7906-11 [PMID: 17951438]
  73. J Infect Dis. 2019 Jan 7;219(2):295-304 [PMID: 30321351]
  74. Zoonoses Public Health. 2021 Nov;68(7):815-822 [PMID: 34151522]
  75. PLoS Negl Trop Dis. 2016 Aug 11;10(8):e0004857 [PMID: 27513951]
  76. J Food Prot. 2014 Jan;77(1):57-66 [PMID: 24405999]
  77. Int J Food Microbiol. 2016 Nov 7;236:115-22 [PMID: 27479779]
  78. Clin Infect Dis. 2006 Jan 1;42(1):21-8 [PMID: 16323087]
  79. J Food Prot. 2012 Sep;75(9):1709-14 [PMID: 22947480]
  80. J Vet Med Sci. 2018 Aug 30;80(8):1345-1347 [PMID: 29952345]

Word Cloud

Created with Highcharts 10.0.0NTSprevalenceVietnamresistanceAMR3reviewmeta-analysisincrease120%4%8%Non-typhoidalzoonoticpathogenhumanphenotypicantimicrobialidentifiedstudiesdatasamplesobserved3% = 01%49%7%OneHealthfood-borneimportantimplicationshealthDespiteimportanceburdeninfectionsunknownconductedsystematicdescribetimeFollowingPRISMAguidelines72PubMedGoogleScholarcontainingrelevant''Salmonellosis''Vietnam''VietNam'forty-twopapersreportingtwenty-sixincludingselectedranged2%5%humans30%41%animalsfarm/slaughterhouseenvironment2000202027044absolutetermsamongindividualsentericdiseases047aquaculture/seafoodcommonlyserovarsacrossincludedWeltevredenfollowedTyphimurium10Derby6London5AnatumRissenEnteritidisAlbany[5]12:i:-periodincreasingtrendpooledquinolones156%relative3rd-4th-5th-generationcephalosporins23penicillins16tetracyclinessulfonamides8amphenicol17multidrug11 ≤ 0014broadrangegenesARGsdetectedanimalpopulationstrendsunderscoreneedadoptingstrategyencompassingsurveillancesystemsresearchinitiativesawarenesscampaignseffectivelyaddresschallengesposednon-typhoidalVietnam:ChallengescontroltraitsneglectedAntimicrobialresitanceMeta-analysisSalmonellaSystematic

Similar Articles

Cited By