, a butyrate-producing bacterium capable of metabolizing 5-fluorouracil.

Danping Liu, Li-Sheng Xie, Shitao Lian, Kexin Li, Yun Yang, Wen-Zhao Wang, Songnian Hu, Shuang-Jiang Liu, Chang Liu, Zilong He
Author Information
  1. Danping Liu: School of Engineering Medicine, Beihang University, Beijing, China. ORCID
  2. Li-Sheng Xie: State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
  3. Shitao Lian: School of Engineering Medicine, Beihang University, Beijing, China.
  4. Kexin Li: Systems Biology and Bioinformatics (SBI), Leibniz Institute for Natural Product Research and Infection Biology-Hans Kn��ll Institute (HKI), Jena, Germany.
  5. Yun Yang: School of Engineering Medicine, Beihang University, Beijing, China.
  6. Wen-Zhao Wang: State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
  7. Songnian Hu: State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China. ORCID
  8. Shuang-Jiang Liu: State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China. ORCID
  9. Chang Liu: State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China. ORCID
  10. Zilong He: School of Engineering Medicine, Beihang University, Beijing, China. ORCID

Abstract

() is a dominant species in the human gut microbiota and considered a beneficial bacterium for producing probiotic butyrate. However, recent studies have suggested that may negatively affect the host through synthesizing fatty acid and metabolizing the anticancer drug 5-fluorouracil, indicating that the impact of is complex and unclear. Therefore, comprehensive genomic studies on need to be performed. We integrated 527 high-quality public genomes and five distinct metagenomic cohorts. We analyzed these data using the approaches of comparative genomics, metagenomics, and protein structure prediction. We also performed validations with culture-based assays. We constructed the first large-scale pan-genome of ( = 527) and identified 5-fluorouracil metabolism genes as ubiquitous in genomes as butyrate-producing genes. Metagenomic analysis revealed the wide and stable distribution of in healthy individuals, patients with inflammatory bowel disease, and patients with colorectal cancer, with healthy individuals carrying more . The predicted high-quality protein structure indicated that might metabolize 5-fluorouracil by producing bacterial dihydropyrimidine dehydrogenase (encoded by the operon). Through assays, we validated the short-chain fatty acid production and 5-fluorouracil metabolism abilities of . We observed for the first time that can convert 5-fluorouracil to ��-fluoro-��-ureidopropionic acid, which may result from the combined action of the operon and adjacent (encoding bacterial dihydropyrimidinase). Our results offer novel understandings of , exceptionally functional features, and potential applications.
IMPORTANCE: This work provides new insights into the evolutionary relationships, functional characteristics, prevalence, and potential applications of .

Keywords

References

  1. Nat Commun. 2015 Mar 11;6:6528 [PMID: 25758642]
  2. J Bacteriol. 2004 Apr;186(7):2099-106 [PMID: 15028695]
  3. Adv Nutr. 2018 Jan 1;9(1):21-29 [PMID: 29438462]
  4. J Bacteriol. 2011 Feb;193(4):989-93 [PMID: 21169495]
  5. Appl Environ Microbiol. 1996 May;62(5):1589-92 [PMID: 8633856]
  6. Genome Biol. 2014 Mar 03;15(3):R46 [PMID: 24580807]
  7. Nat Methods. 2012 Mar 04;9(4):357-9 [PMID: 22388286]
  8. Bioinformatics. 2013 Apr 15;29(8):1072-5 [PMID: 23422339]
  9. PLoS One. 2010 Mar 10;5(3):e9490 [PMID: 20224823]
  10. FEMS Microbiol Lett. 2009 May;294(1):1-8 [PMID: 19222573]
  11. mSystems. 2017 Dec 5;2(6): [PMID: 29238752]
  12. Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W5-9 [PMID: 18440982]
  13. Imeta. 2022 Oct 13;1(4):e58 [PMID: 38867908]
  14. Nucleic Acids Res. 2023 Jan 6;51(D1):D690-D699 [PMID: 36263822]
  15. Front Microbiol. 2022 Aug 16;13:957885 [PMID: 36051762]
  16. Elife. 2021 May 04;10: [PMID: 33944776]
  17. Front Microbiol. 2023 Feb 24;14:1133917 [PMID: 36910196]
  18. Sci Rep. 2016 Jun 06;6:27572 [PMID: 27264309]
  19. Bioinformatics. 2015 Oct 15;31(20):3359-61 [PMID: 26069263]
  20. Bioinformatics. 2015 Nov 15;31(22):3691-3 [PMID: 26198102]
  21. Ther Adv Chronic Dis. 2020 Feb 26;11:2040622320904293 [PMID: 32153743]
  22. Cell Host Microbe. 2022 Aug 10;30(8):1139-1150.e7 [PMID: 35952646]
  23. Nat Methods. 2022 Jun;19(6):679-682 [PMID: 35637307]
  24. Trends Microbiol. 2014 May;22(5):267-74 [PMID: 24698744]
  25. Gastroenterology. 2020 Apr;158(5):1313-1325 [PMID: 31972239]
  26. Bioinformatics. 2014 May 1;30(9):1312-3 [PMID: 24451623]
  27. Nat Microbiol. 2023 Jan;8(1):12-27 [PMID: 36522461]
  28. Nucleic Acids Res. 2015 Jul 1;43(W1):W39-49 [PMID: 25953851]
  29. J Biochem. 2021 Dec 4;170(4):511-520 [PMID: 34097066]
  30. Microbiome. 2019 Dec 6;7(1):154 [PMID: 31810497]
  31. Curr Protoc Bioinformatics. 2020 Mar;69(1):e96 [PMID: 32162851]
  32. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W182-5 [PMID: 17526522]
  33. Nat Rev Microbiol. 2018 Jun 24;16:540-550 [PMID: 29937540]
  34. Nat Microbiol. 2018 Mar;3(3):337-346 [PMID: 29311644]
  35. Gigascience. 2021 Feb 16;10(2): [PMID: 33590861]
  36. Gut. 2017 Jan;66(1):70-78 [PMID: 26408641]
  37. Biochem Biophys Res Commun. 2022 Jul 12;613:81-86 [PMID: 35537289]
  38. Theranostics. 2021 Mar 31;11(12):5778-5793 [PMID: 33897881]
  39. Syst Appl Microbiol. 2002 Apr;25(1):46-51 [PMID: 12086188]
  40. Nat Microbiol. 2022 Oct;7(10):1605-1620 [PMID: 36138165]
  41. Anaerobe. 2012 Oct;18(5):523-9 [PMID: 22982042]
  42. Nucleic Acids Res. 2022 Jan 7;50(D1):D912-D917 [PMID: 34850947]
  43. Nutrients. 2022 Jan 12;14(2): [PMID: 35057489]
  44. Methods Mol Biol. 2019;1962:227-245 [PMID: 31020564]
  45. Bioinformatics. 2016 Oct 1;32(19):3047-8 [PMID: 27312411]
  46. Cell. 2017 Apr 20;169(3):442-456.e18 [PMID: 28431245]
  47. Gut. 2014 Sep;63(9):1513-21 [PMID: 24833634]
  48. Pharmacol Ther. 2020 Feb;206:107447 [PMID: 31756363]
  49. Front Cell Infect Microbiol. 2023 Jan 04;12:919701 [PMID: 36683686]
  50. Brief Bioinform. 2022 Nov 19;23(6): [PMID: 36124775]
  51. Clin Microbiol Infect. 2016 Jan;22(1):37-45 [PMID: 26493849]
  52. Genome Res. 2015 Jul;25(7):1043-55 [PMID: 25977477]
  53. Gut. 2016 Mar;65(3):415-425 [PMID: 26045134]
  54. Gut. 2014 Aug;63(8):1275-83 [PMID: 24021287]
  55. Nat Methods. 2015 Jan;12(1):59-60 [PMID: 25402007]
  56. Crit Rev Food Sci Nutr. 2019;59(sup1):S130-S152 [PMID: 30580556]
  57. Biochem Biophys Res Commun. 2008 Aug 1;372(3):407-11 [PMID: 18482579]
  58. Microb Genom. 2020 Oct;6(10): [PMID: 32975504]
  59. Nat Commun. 2020 May 19;11(1):2500 [PMID: 32427907]
  60. Bioinformatics. 2014 Jul 15;30(14):2068-9 [PMID: 24642063]
  61. Nat Microbiol. 2017 Mar 28;2:17040 [PMID: 28350002]
  62. J Transl Med. 2021 Jun 22;19(1):269 [PMID: 34158060]
  63. Nat Biotechnol. 2021 Jan;39(1):105-114 [PMID: 32690973]
  64. Science. 2013 Nov 22;342(6161):967-70 [PMID: 24264989]
  65. Pharmaceutics. 2022 Oct 06;14(10): [PMID: 36297556]
  66. J Hosp Infect. 2017 Mar;95(3):300-305 [PMID: 27988045]
  67. Nucleic Acids Res. 2018 Jan 4;46(D1):D41-D47 [PMID: 29140468]

Grants

  1. 2022YFA1304103/MOST | National Key Research and Development Program of China (NKPs)