Recent Advances in the Development of Polymyxin Antibiotics: 2010-2023.

Cornelis J Slingerland, Nathaniel I Martin
Author Information
  1. Cornelis J Slingerland: Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands. ORCID
  2. Nathaniel I Martin: Biological Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands. ORCID

Abstract

The polymyxins are nonribosomal lipopeptides produced by and are potent antibiotics with activity specifically directed against Gram-negative bacteria. While the clinical use of polymyxins has historically been limited due to their toxicity, their use is on the rise given the lack of alternative treatment options for infections due to multidrug resistant Gram-negative pathogens. The Gram-negative specificity of the polymyxins is due to their ability to target lipid A, the membrane embedded LPS anchor that decorates the cell surface of Gram-negative bacteria. Notably, the mechanisms responsible for polymyxin toxicity, and in particular their nephrotoxicity, are only partially understood with most insights coming from studies carried out in the past decade. In parallel, many synthetic and semisynthetic polymyxin analogues have been developed in recent years in an attempt to mitigate the nephrotoxicity of the natural products. Despite these efforts, to date, no polymyxin analogues have gained clinical approval. This may soon change, however, as at the moment there are three novel polymyxin analogues in clinical trials. In this context, this review provides an update of the most recent insights with regard to the structure-activity relationships and nephrotoxicity of new polymyxin variants reported since 2010. We also discuss advances in the synthetic methods used to generate new polymyxin analogues, both via total synthesis and semisynthesis.

References

  1. Antimicrob Agents Chemother. 2017 Mar 24;61(4): [PMID: 28096166]
  2. J Med Chem. 2023 Feb 23;66(4):2865-2876 [PMID: 36745479]
  3. J Antibiot (Tokyo). 2017 Apr;70(4):386-394 [PMID: 28074057]
  4. Nature. 2022 Jan;601(7894):606-611 [PMID: 34987225]
  5. J Med Chem. 2018 Mar 8;61(5):1845-1857 [PMID: 29412662]
  6. Cell. 2023 Feb 16;186(4):821-836.e13 [PMID: 36750096]
  7. Diagn Microbiol Infect Dis. 2009 Dec;65(4):431-4 [PMID: 19733029]
  8. ACS Infect Dis. 2018 May 11;4(5):646-655 [PMID: 29566483]
  9. Int J Antimicrob Agents. 2016 Dec;48(6):592-597 [PMID: 27793510]
  10. Bioorg Med Chem Lett. 2020 Jun 1;30(11):127163 [PMID: 32273214]
  11. Science. 2010 Feb 19;327(5968):1010-3 [PMID: 20167788]
  12. Toxicol Appl Pharmacol. 2005 May 1;204(3):329-42 [PMID: 15845422]
  13. J Med Chem. 2022 Dec 8;65(23):15878-15892 [PMID: 36399613]
  14. J Antibiot (Tokyo). 1977 Sep;30(9):767-9 [PMID: 200598]
  15. Antimicrob Agents Chemother. 2008 Sep;52(9):3229-36 [PMID: 18591267]
  16. Redox Biol. 2013 Sep 17;1:448-56 [PMID: 24191240]
  17. Antioxidants (Basel). 2020 Jun 09;9(6): [PMID: 32526966]
  18. J Antimicrob Chemother. 2013 Mar;68(3):636-9 [PMID: 23134658]
  19. J Med Chem. 2010 Mar 11;53(5):1898-916 [PMID: 19874036]
  20. ACS Infect Dis. 2022 Sep 9;8(9):1731-1757 [PMID: 35946799]
  21. J Antimicrob Chemother. 2016 Feb;71(2):403-12 [PMID: 26494147]
  22. Molecules. 2019 Feb 02;24(3): [PMID: 30717415]
  23. Antimicrob Agents Chemother. 2014 May;58(5):2740-6 [PMID: 24566187]
  24. ACS Infect Dis. 2022 Aug 12;8(8):1381-1407 [PMID: 35895325]
  25. J Med Chem. 2013 Jun 27;56(12):5079-93 [PMID: 23735048]
  26. ACS Chem Neurosci. 2018 Apr 18;9(4):824-837 [PMID: 29257864]
  27. Med Res Rev. 2016 Jan;36(1):4-31 [PMID: 24866700]
  28. Int J Mol Med. 2014 May;33(5):1298-304 [PMID: 24604244]
  29. Immunochemistry. 1976 Oct;13(10):813-8 [PMID: 187544]
  30. Lancet. 2022 Feb 12;399(10325):629-655 [PMID: 35065702]
  31. Sci Rep. 2015 May 29;5:10558 [PMID: 26024044]
  32. Chem Biol. 2011 Dec 23;18(12):1640-8 [PMID: 22195566]
  33. Chem Rev. 2017 Oct 11;117(19):12415-12474 [PMID: 28953368]
  34. J Infect. 2021 Feb;82(2):207-215 [PMID: 33453286]
  35. ACS Cent Sci. 2021 Jan 27;7(1):126-134 [PMID: 33532575]
  36. Biomed Pharmacother. 2023 Aug;164:114965 [PMID: 37295247]
  37. J Antibiot (Tokyo). 1977 Dec;30(12):1035-41 [PMID: 202583]
  38. Nat Rev Drug Discov. 2013 May;12(5):371-87 [PMID: 23629505]
  39. Antimicrob Agents Chemother. 2022 May 17;66(5):e0005422 [PMID: 35471042]
  40. J Mol Biol. 2020 Aug 21;432(18):5184-5196 [PMID: 32353363]
  41. Nat Commun. 2022 Oct 21;13(1):6195 [PMID: 36271003]
  42. Nature. 1983 Jun 9-15;303(5917):526-8 [PMID: 6406904]
  43. J Mol Recognit. 2017 Jun;30(6): [PMID: 28054415]
  44. Emerg Microbes Infect. 2020 Dec;9(1):868-885 [PMID: 32284036]
  45. Antibiotics (Basel). 2019 Mar 14;8(1): [PMID: 30875778]
  46. Bioorg Med Chem Lett. 2018 Sep 1;28(16):2713-2716 [PMID: 29606572]
  47. Nat Rev Microbiol. 2019 Jul;17(7):403-416 [PMID: 31142822]
  48. J Nat Prod. 2017 May 26;80(5):1264-1274 [PMID: 28463513]
  49. Bioorg Chem. 2018 Oct;80:639-648 [PMID: 30053708]
  50. Peptides. 2017 May;91:8-12 [PMID: 28300674]
  51. Future Microbiol. 2013 Jun;8(6):711-24 [PMID: 23701329]
  52. Microorganisms. 2021 Feb 20;9(2): [PMID: 33672663]
  53. Antimicrob Agents Chemother. 2014;58(1):440-6 [PMID: 24189256]
  54. J Am Chem Soc. 2018 Jun 6;140(22):6749-6753 [PMID: 29746111]
  55. Antimicrob Agents Chemother. 2014 Jul;58(7):4075-85 [PMID: 24798292]
  56. Nat Prod Rep. 2017 Jul 6;34(7):886-908 [PMID: 28628170]
  57. Clin Chem. 1995 Oct;41(10):1509-17 [PMID: 7586526]
  58. J Med Chem. 1999 Nov 4;42(22):4604-13 [PMID: 10579822]
  59. Science. 2021 Jul 30;373(6554):471 [PMID: 34326211]
  60. Antimicrob Agents Chemother. 2021 Sep 17;65(10):e0073921 [PMID: 34339267]
  61. J Antimicrob Chemother. 1986 Jul;18(1):9-15 [PMID: 3019982]
  62. J Med Chem. 2021 May 13;64(9):5746-5765 [PMID: 33909428]
  63. Antimicrob Agents Chemother. 2006 Jun;50(6):1953-8 [PMID: 16723551]
  64. Expert Rev Anti Infect Ther. 2015;13(12):1481-97 [PMID: 26488563]
  65. J Control Release. 2011 May 10;151(3):220-8 [PMID: 21078351]
  66. Curr Opin Microbiol. 2019 Oct;51:72-80 [PMID: 31733401]
  67. Antimicrob Agents Chemother. 2020 Oct 20;64(11): [PMID: 32868332]
  68. Expert Rev Clin Pharmacol. 2021 Sep;14(9):1113-1131 [PMID: 34015235]
  69. J Am Chem Soc. 2003 Mar 5;125(9):2426-35 [PMID: 12603130]
  70. Nature. 1947 Aug 23;159(4060):263 [PMID: 20256217]
  71. J Clin Invest. 1995 Sep;96(3):1404-13 [PMID: 7544804]
  72. Antimicrob Agents Chemother. 2017 Feb 23;61(3): [PMID: 27993859]
  73. ACS Infect Dis. 2020 Aug 14;6(8):2110-2119 [PMID: 32619094]
  74. Antimicrob Agents Chemother. 2022 May 17;66(5):e0013922 [PMID: 35475635]
  75. Nature. 1949 Apr 16;163(4146):611 [PMID: 18117140]
  76. J Antimicrob Chemother. 2015 Mar;70(3):827-9 [PMID: 25377569]
  77. Ann N Y Acad Sci. 1949 Jun 22;51(Art. 5):897-908 [PMID: 18135897]
  78. Anal Chem. 2015 Feb 3;87(3):1590-5 [PMID: 25553489]
  79. Cold Spring Harb Perspect Med. 2016 Oct 3;6(10): [PMID: 27503996]
  80. Nat Prod Rep. 2017 Mar 17;34(3):295-309 [PMID: 28180225]
  81. ACS Infect Dis. 2022 Dec 9;8(12):2396-2404 [PMID: 36342383]
  82. Microbiology (Reading). 2021 Nov;167(11): [PMID: 34723787]
  83. Talanta. 2011 Feb 15;83(5):1521-9 [PMID: 21238747]
  84. Antimicrob Agents Chemother. 2014 Jul;58(7):4200-2 [PMID: 24733472]
  85. ACS Infect Dis. 2022 Dec 9;8(12):2413-2429 [PMID: 36413173]
  86. Chem Pharm Bull (Tokyo). 2011;59(5):597-602 [PMID: 21532197]
  87. J Am Soc Nephrol. 2017 Jun;28(6):1783-1791 [PMID: 28052987]
  88. ACS Infect Dis. 2019 Oct 11;5(10):1645-1656 [PMID: 31525992]
  89. Mol Pharmacol. 2018 Aug;94(2):926-937 [PMID: 29895592]
  90. ACS Omega. 2018 Dec 31;3(12):17828-17834 [PMID: 30613815]
  91. Mol Biol Rep. 2020 Mar;47(3):2023-2034 [PMID: 32030599]
  92. Eur J Biochem. 1975 Feb 21;51(2):343-52 [PMID: 807474]
  93. Front Cell Infect Microbiol. 2022 May 12;12:829592 [PMID: 35646734]
  94. RSC Med Chem. 2023 Oct 10;14(11):2417-2425 [PMID: 37974968]
  95. Biochim Biophys Acta. 2016 Dec;1863(12):2977-2992 [PMID: 27646922]
  96. J Antimicrob Chemother. 2017 Jun 1;72(6):1635-1645 [PMID: 28204513]
  97. ACS Chem Neurosci. 2019 Jan 16;10(1):120-131 [PMID: 30362702]
  98. Expert Opin Drug Saf. 2015;14(11):1687-701 [PMID: 26365594]
  99. Antimicrob Agents Chemother. 1989 Sep;33(9):1428-34 [PMID: 2554795]
  100. Nat Commun. 2022 Mar 25;13(1):1625 [PMID: 35338128]
  101. Crit Rev Microbiol. 2019 Mar;45(2):131-161 [PMID: 31122100]
  102. Clin Infect Dis. 2013 Nov;57(9):1300-3 [PMID: 23840000]
  103. J Immunol. 1984 May;132(5):2582-9 [PMID: 6325539]
  104. J Biochem. 1963 Jul;54:25-33 [PMID: 14056349]
  105. Biophys J. 2005 Mar;88(3):1845-58 [PMID: 15596502]
  106. Nat Prod Rep. 2017 Jul 1;34(7):694-701 [PMID: 28569300]
  107. Ann Intern Med. 1968 Feb;68(2):318-27 [PMID: 4306125]
  108. Biochemistry. 2000 Oct 3;39(39):11837-44 [PMID: 11009595]
  109. Elife. 2021 Apr 06;10: [PMID: 33821795]
  110. Antimicrob Agents Chemother. 2015 Dec;59(12):7489-96 [PMID: 26392495]
  111. Bull Johns Hopkins Hosp. 1947 Jul;81(1):43-54 [PMID: 20259524]
  112. ACS Infect Dis. 2020 Apr 10;6(4):715-724 [PMID: 32037797]
  113. Molecules. 2019 Feb 12;24(3): [PMID: 30759858]
  114. Toxicol Sci. 2014 Feb;137(2):278-91 [PMID: 24189134]
  115. Antimicrob Agents Chemother. 2013 Dec;57(12):6319-24 [PMID: 24100504]
  116. AMA Arch Intern Med. 1953 Aug;92(2):248-57 [PMID: 13079346]
  117. Br J Pharmacol Chemother. 1964 Dec;23:552-74 [PMID: 14256814]
  118. ACS Infect Dis. 2020 Jul 10;6(7):1796-1806 [PMID: 32330004]
  119. Cell Mol Life Sci. 2022 May 15;79(6):296 [PMID: 35570209]
  120. Pharmacol Rev. 2021 Apr;73(2):679-728 [PMID: 33627412]
  121. Peptides. 2010 Dec;31(12):2318-21 [PMID: 20868714]
  122. Drug Discov Today. 2005 Jan 1;10(1):45-52 [PMID: 15676298]
  123. J Med Chem. 2016 Feb 11;59(3):1068-77 [PMID: 26734854]
  124. Drug Metab Dispos. 2017 Dec;45(12):1240-1244 [PMID: 28986476]
  125. J Antimicrob Chemother. 2020 Sep 1;75(9):2609-2615 [PMID: 32591806]
  126. Arch Toxicol. 2018 Jul;92(7):2259-2271 [PMID: 29556720]
  127. J Antimicrob Chemother. 2018 Feb 1;73(2):452-455 [PMID: 29149329]
  128. Ann N Y Acad Sci. 1949 Jun 22;51(Art. 5):998-1000 [PMID: 18135905]
  129. Food Chem Toxicol. 2022 May;163:112966 [PMID: 35378205]
  130. J Biol Chem. 1972 Jun 25;247(12):3962-72 [PMID: 4555955]

Grants

  1. /European Research Council

MeSH Term

Anti-Bacterial Agents
Polymyxins
Lipopeptides
Gram-Negative Bacteria
Structure-Activity Relationship

Chemicals

Anti-Bacterial Agents
Polymyxins
Lipopeptides

Word Cloud

Created with Highcharts 10.0.0polymyxinGram-negativeanaloguespolymyxinsclinicalduenephrotoxicitybacteriausetoxicityinsightssyntheticrecentnewnonribosomallipopeptidesproducedpotentantibioticsactivityspecificallydirectedhistoricallylimitedrisegivenlackalternativetreatmentoptionsinfectionsmultidrugresistantpathogensspecificityabilitytargetlipidmembraneembeddedLPSanchordecoratescellsurfaceNotablymechanismsresponsibleparticularpartiallyunderstoodcomingstudiescarriedpastdecadeparallelmanysemisyntheticdevelopedyearsattemptmitigatenaturalproductsDespiteeffortsdategainedapprovalmaysoonchangehowevermomentthreenoveltrialscontextreviewprovidesupdateregardstructure-activityrelationshipsvariantsreportedsince2010alsodiscussadvancesmethodsusedgenerateviatotalsynthesissemisynthesisRecentAdvancesDevelopmentPolymyxinAntibiotics:2010-2023

Similar Articles

Cited By