Integrative cross-species analysis reveals conserved and unique signatures in fatty skeletal muscles.

Liyi Wang, Yanbing Zhou, Yizhen Wang, Tizhong Shan
Author Information
  1. Liyi Wang: College of Animal Sciences, Zhejiang University, Hangzhou, China. ORCID
  2. Yanbing Zhou: College of Animal Sciences, Zhejiang University, Hangzhou, China. ORCID
  3. Yizhen Wang: College of Animal Sciences, Zhejiang University, Hangzhou, China.
  4. Tizhong Shan: College of Animal Sciences, Zhejiang University, Hangzhou, China. tzshan@zju.edu.cn. ORCID

Abstract

Fat infiltration in skeletal muscle is now recognized as a standard feature of aging and is directly related to the decline in muscle function. However, there is still a limited systematic integration and exploration of the mechanisms underlying the occurrence of myosteatosis in aging across species. Here, we re-analyzed bulk RNA-seq datasets to investigate the association between fat infiltration in skeletal muscle and aging. Our integrated analysis of single-nucleus transcriptomics in aged humans and Laiwu pigs with high intramuscular fat content, identified species-preference subclusters and revealed core gene programs associated with myosteatosis. Furthermore, we found that fibro/adipogenic progenitors (FAPs) had potential capacity of differentiating into PDE4D/PDE7B preadipocytes across species. Additionally, cell-cell communication analysis revealed that FAPs may be associated with other adipogenic potential clusters via the COL4A2 and COL6A3 pathways. Our study elucidates the correlation mechanism between aging and fat infiltration in skeletal muscle, and these consensus signatures in both humans and pigs may contribute to increasing reproducibility and reliability in future studies involving in the field of muscle research.

References

  1. J Physiol. 2020 Jul;598(13):2669-2683 [PMID: 32358797]
  2. J Cachexia Sarcopenia Muscle. 2018 Feb;9(1):3-19 [PMID: 29151281]
  3. Semin Cell Dev Biol. 2017 Dec;72:19-32 [PMID: 29127046]
  4. NPJ Sci Food. 2023 Jun 2;7(1):23 [PMID: 37268610]
  5. Cytotherapy. 2013 Jun;15(6):641-8 [PMID: 23570660]
  6. Nat Commun. 2020 Dec 11;11(1):6374 [PMID: 33311464]
  7. Cold Spring Harb Perspect Biol. 2012 Feb 01;4(2): [PMID: 22300977]
  8. Dis Markers. 2019 Jul 1;2019:9140789 [PMID: 31354893]
  9. J Biol Chem. 2004 May 21;279(21):22514-21 [PMID: 15016833]
  10. Elife. 2019 Oct 23;8: [PMID: 31642809]
  11. Nature. 2008 Aug 21;454(7207):961-7 [PMID: 18719582]
  12. J Cachexia Sarcopenia Muscle. 2022 Apr;13(2):781-794 [PMID: 35106971]
  13. Nat Cell Biol. 2010 Feb;12(2):153-63 [PMID: 20081841]
  14. Crit Rev Biomed Eng. 2019;47(6):515-533 [PMID: 32421976]
  15. Cell Stem Cell. 2021 Jul 1;28(7):1323-1334.e8 [PMID: 33945794]
  16. Nature. 2018 Aug;560(7719):494-498 [PMID: 30089906]
  17. Nat Biotechnol. 2020 Dec;38(12):1408-1414 [PMID: 32747759]
  18. Protein Cell. 2023 Jun 28;14(7):497-512 [PMID: 36921027]
  19. iScience. 2024 Feb 15;27(3):109221 [PMID: 38433917]
  20. Nat Cell Biol. 2010 Feb;12(2):143-52 [PMID: 20081842]
  21. Nat Commun. 2020 Oct 9;11(1):5102 [PMID: 33037211]
  22. Aging (Albany NY). 2022 Dec 13;14(23):9393-9422 [PMID: 36516485]
  23. Geroscience. 2019 Jun;41(3):321-340 [PMID: 31264075]
  24. Curr Opin Clin Nutr Metab Care. 2010 May;13(3):260-4 [PMID: 20179586]
  25. Annu Rev Physiol. 2018 Feb 10;80:159-188 [PMID: 29195055]
  26. Ageing Res Rev. 2021 Sep;70:101398 [PMID: 34214642]
  27. Cell Mol Life Sci. 2015 Jun;72(11):2135-56 [PMID: 25854633]
  28. Mol Cell. 2019 May 2;74(3):609-621.e6 [PMID: 30922843]
  29. Meat Sci. 2012 Jul;91(3):358-63 [PMID: 22421682]
  30. Nat Commun. 2021 Jun 17;12(1):3715 [PMID: 34140474]
  31. Am J Clin Nutr. 2004 May;79(5):874-80 [PMID: 15113728]
  32. Nature. 2012 Nov 15;491(7424):393-8 [PMID: 23151582]
  33. Proc Natl Acad Sci U S A. 2020 Nov 24;117(47):29691-29701 [PMID: 33148801]
  34. Cell Death Dis. 2014 Apr 17;5:e1186 [PMID: 24743741]
  35. Development. 2013 Nov;140(22):4602-13 [PMID: 24131632]
  36. Dis Model Mech. 2018 Jan 22;11(1): [PMID: 29419487]
  37. J Cachexia Sarcopenia Muscle. 2021 Feb;12(1):109-129 [PMID: 33244879]
  38. Nat Commun. 2023 Feb 14;14(1):822 [PMID: 36788228]
  39. Sci Adv. 2021 Jun 2;7(23): [PMID: 34078594]
  40. Nat Commun. 2020 Dec 11;11(1):6375 [PMID: 33311457]
  41. Int J Mol Sci. 2021 Apr 19;22(8): [PMID: 33921590]
  42. Cell Metab. 2013 Feb 5;17(2):210-24 [PMID: 23395168]
  43. Commun Biol. 2023 Jan 27;6(1):111 [PMID: 36707617]
  44. J Cachexia Sarcopenia Muscle. 2018 Apr;9(2):335-347 [PMID: 29248005]
  45. Ageing Res Rev. 2018 Nov;47:214-277 [PMID: 30071357]

Grants

  1. 32272887/National Natural Science Foundation of China (National Science Foundation of China)
  2. LZ22C170003/Natural Science Foundation of Zhejiang Province (Zhejiang Provincial Natural Science Foundation)

MeSH Term

Aged
Animals
Humans
Adipogenesis
Aging
Cell Differentiation
Muscle, Skeletal
Swine
Datasets as Topic
RNA-Seq
Transcriptome
Adipocytes
Stem Cells

Word Cloud

Created with Highcharts 10.0.0muscleskeletalaginginfiltrationfatanalysismyosteatosisacrossspecieshumanspigsrevealedassociatedFAPspotentialmaysignaturesFatnowrecognizedstandardfeaturedirectlyrelateddeclinefunctionHoweverstilllimitedsystematicintegrationexplorationmechanismsunderlyingoccurrencere-analyzedbulkRNA-seqdatasetsinvestigateassociationintegratedsingle-nucleustranscriptomicsagedLaiwuhighintramuscularcontentidentifiedspecies-preferencesubclusterscoregeneprogramsFurthermorefoundfibro/adipogenicprogenitorscapacitydifferentiatingPDE4D/PDE7BpreadipocytesAdditionallycell-cellcommunicationadipogenicclustersviaCOL4A2COL6A3pathwaysstudyelucidatescorrelationmechanismconsensuscontributeincreasingreproducibilityreliabilityfuturestudiesinvolvingfieldresearchIntegrativecross-speciesrevealsconserveduniquefattymuscles

Similar Articles

Cited By