Integrated Fruit Ripeness Assessment System Based on an Artificial Olfactory Sensor and Deep Learning.

Mingming Zhao, Zhiheng You, Huayun Chen, Xiao Wang, Yibin Ying, Yixian Wang
Author Information
  1. Mingming Zhao: School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
  2. Zhiheng You: School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
  3. Huayun Chen: School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
  4. Xiao Wang: School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
  5. Yibin Ying: School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
  6. Yixian Wang: School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China. ORCID

Abstract

Artificial scent screening systems, inspired by the mammalian olfactory system, hold promise for fruit ripeness detection, but their commercialization is limited by low sensitivity or pattern recognition inaccuracy. This study presents a portable fruit ripeness prediction system based on colorimetric sensing combinatorics and deep convolutional neural networks (DCNN) to accurately identify fruit ripeness. Using the gas chromatography-mass spectrometry (GC-MS) method, the study discerned the distinctive gases emitted by mango, peach, and banana across various ripening stages. The colorimetric sensing combinatorics utilized 25 dyes sensitive to fruit volatile gases, generating a distinct scent fingerprint through cross-reactivity to diverse concentrations and varieties of gases. The unique scent fingerprints can be identified using DCNN. After capturing colorimetric sensor image data, the densely connected convolutional network (DenseNet) was employed, achieving an impressive accuracy rate of 97.39% on the validation set and 82.20% on the test set in assessing fruit ripeness. This fruit ripeness prediction system, coupled with a DCNN, successfully addresses the issues of complex pattern recognition and low identification accuracy. Overall, this innovative tool exhibits high accuracy, non-destructiveness, practical applicability, convenience, and low cost, making it worth considering and developing for fruit ripeness detection.

Keywords

References

  1. Nat Commun. 2019 Feb 15;10(1):795 [PMID: 30770837]
  2. Molecules. 2018 Sep 25;23(10): [PMID: 30257494]
  3. IEEE Trans Cybern. 2016 Mar;46(3):792-803 [PMID: 25898326]
  4. Anal Chem. 2019 Jan 2;91(1):797-802 [PMID: 30547588]
  5. ACS Sens. 2022 Jul 22;7(7):1847-1854 [PMID: 35834210]
  6. IEEE Trans Med Imaging. 2008 Oct;27(10):1472-83 [PMID: 18815099]
  7. Sci Transl Med. 2016 Nov 23;8(366):366ra165 [PMID: 27881826]
  8. IEEE Trans Neural Netw Learn Syst. 2023 Nov;34(11):9466-9480 [PMID: 36121958]
  9. Food Chem. 2019 Jul 30;287:232-240 [PMID: 30857694]
  10. Carbohydr Polym. 2021 Nov 15;274:118653 [PMID: 34702472]
  11. IEEE Trans Image Process. 2005 Mar;14(3):312-20 [PMID: 15762328]
  12. Adv Mater. 2020 Nov;32(45):e2004805 [PMID: 33006183]
  13. Nature. 2015 May 28;521(7553):436-44 [PMID: 26017442]
  14. Sci Rep. 2021 May 27;11(1):11202 [PMID: 34045542]
  15. Chem Rev. 2019 Oct 9;119(19):10803-10828 [PMID: 31594311]
  16. Analyst. 2009 Dec;134(12):2453-7 [PMID: 19918616]
  17. Food Chem. 2022 Mar 30;373(Pt B):131593 [PMID: 34838401]
  18. Nat Commun. 2015 Sep 15;6:8240 [PMID: 26370931]
  19. J Chem Inf Model. 2019 Jun 24;59(6):2545-2559 [PMID: 31194543]
  20. Nanoscale. 2017 Jan 5;9(2):869-874 [PMID: 27995251]
  21. ACS Nano. 2022 Sep 27;16(9):14297-14307 [PMID: 36043472]
  22. Food Chem. 2021 Mar 1;339:127861 [PMID: 32836025]
  23. IEEE Trans Pattern Anal Mach Intell. 2021 Aug;43(8):2647-2664 [PMID: 32142423]
  24. J Adv Res. 2019 Oct 24;29:179-189 [PMID: 33842015]
  25. MRS Bull. 2004 Oct;29(10):720-5 [PMID: 15991401]
  26. IEEE Trans Image Process. 2017 Dec;26(12):5590-5602 [PMID: 28792897]
  27. New Phytol. 2021 May;230(4):1623-1638 [PMID: 33555031]

Grants

  1. No. U20A2019/National Natural Science Foundation of China

Word Cloud

Created with Highcharts 10.0.0fruitripenesscolorimetricscentsystemdetectionlowsensingcombinatoricsconvolutionalDCNNgasesaccuracyArtificialolfactorypatternrecognitionstudypredictiondeepneuralnetworksvolatilesensorsetscreeningsystemsinspiredmammalianholdpromisecommercializationlimitedsensitivityinaccuracypresentsportablebasedaccuratelyidentifyUsinggaschromatography-massspectrometryGC-MSmethoddiscerneddistinctiveemittedmangopeachbananaacrossvariousripeningstagesutilized25dyessensitivegeneratingdistinctfingerprintcross-reactivitydiverseconcentrationsvarietiesuniquefingerprintscanidentifiedusingcapturingimagedatadenselyconnectednetworkDenseNetemployedachievingimpressiverate9739%validation8220%testassessingcoupledsuccessfullyaddressesissuescomplexidentificationOverallinnovativetoolexhibitshighnon-destructivenesspracticalapplicabilityconveniencecostmakingworthconsideringdevelopingIntegratedFruitRipenessAssessmentSystemBasedOlfactorySensorDeepLearningartificialorganiccompounds

Similar Articles

Cited By